
Autonomic Smart Home Operations
Management using CWMP: A Task-centric View

Chun-Feng Liao, Shih-Ting Huang, and Yi-Ching Wang

Department of Computer Science
National Chengchi University, Taipei, Taiwan

{cfliao,101703006,103753028@nccu}@nccu.edu.tw

Abstract. Despite the well-development of smart living space research
field, Smart Home is still more like a luxury product than a daily ne-
cessity for most families. Operations management issues are essential for
a new technology to be accepted by the mass consumer market. How-
ever, only few attempts have been made toward this direction. In this
paper, we present the design and implementation of a CWMP-based
platform that supports autonomic operations management. The exper-
iment results show that the proposed approach is stable and is able to
drive the operations tasks smoothly. We also demonstrate the feasibility
of the platform by realizing two application scenarios supported by the
prototype of the proposed approach.

Keywords: CWMP, TR-069, Operations Management, Smart Home

1 Introduction

The concept of Smart Home was envisioned twenty years ago [1]. Although the
essential technology for constructing smart living spaces has also been an object
of study for more than two decades [2] and the costs of embedded computers,
sensors, and home appliances are much lower than before in the last few years,
Smart Home is still more like a luxury product than a daily necessity for most
families. As pointed out in recent researches, central to this issue is the prob-
lem of autonomic operations management, namely, the ability of a Smart Home
system to be self-deployable[3], self-diagnosable[4, 5], and self-configurable [6, 7].
The above-mentioned self-* properties of systems have been proposed by the
researchers in the field of ”autonomic computing” [8].

Despite the importance of operations management in Smart Home, only few
attempts have been made toward this direction. Rachidi and Karmouch’s work [9]
is a pioneer study in this issue. Based on the MAPE-K (Monitor, Analyze, Plan,
and Execute using Knowledge) model of autonomic computing, they present an
approach that facilitates self-configuration for home gateway based on CWMP
(CPE WAN Management Protocol, where CPE abbreviates Consumer Premises
Equipments) [10]. CWMP, propose by Broadband Forum and also know as TR-
069, is a SOAP-based[11] application layer protocol for remote management



2

and configuration of CPEs, where CPEs are usually home gateways in real-
world applications. As CWMP has been implemented on more than 250 million
devices world-wide [12], it is apparently a good basis for designing the Smart
Home operations managing mechanisms.

Figure 1 is an UML deployment diagram that illustrates a typical application
architecture of autonomic operations management using CWMP. The service
provider’s server hosts an MAPE-K Manager module to proactively analyze,
plan, and determine the strategies of management. After a decision is made,
several commands are executed by an ACS (Auto-Configuration Server). In a
typical scenario, an ACS is responsible for performing administrative operations
of home gateways and a CPE is hosted by a home gateway. Generally, a home
gateway is usually equipped with one or more protocol gateway modules to
HAN (Home Area Network). For instance, to enforce the management strategy
remotely in an UPnP-based home network, an UPnP Control Point module has
to be implemented and deployed in the home gateway. Figure 1 also reveals that
CWMP’s scope is limited to communication among an ACS and CPEs.

In fact, the CWMP specification only defines signatures of remote proce-
dures (listed in Table 1) and their SOAP representations, figuring out how to
compose these remote procedures so that certain operations management tasks
can be carried out is a burden of developers. In other words, CWMP specifica-
tion [10] does not define how to orchestrate these methods to perform operations
management tasks.

Fig. 1: A typical autonomic operations management architecture using CWMP

Inspired by Rachidi and Karmouch’s work [9] on CWMP-based self-configuration,
this paper aims to design and to implement other two essential self-* mechanisms,
namely self-deployment and self-diagnosis, that supports MAPE-K-based auto-
nomic operations management using CWMP. To relief the burden of developers,
this work takes a task-centric approach. Specifically, we design the system by
first identifying the core tasks that is critical to a Smart Home’s daily operations
management. Then, we examined and identified the call sequence of CPE/ACS
operations that collaboratively accomplish these tasks. To evaluate the proposed
call sequences, this paper demonstrates the feasibility of the proposed approaches



3

Table 1: Core Methods specified in CWMP

Subject Method Name Subject Method Name

CPE GetRPCMethods ACS GetRPCMethods
CPE SetParameterValues ACS Inform
CPE GetParameterValues ACS TransferComplete
CPE GetParameterNames ACS AutonomousTransferComplete
CPE SetParameterAttributes CPE GetParameterAttributes
CPE AddObject CPE DeleteObject
CPE Reboot CPE Download

by implementing a prototype and by conducting experiments on the prototype.
We hope that our work is helpful for the developers of infrastructure for Smart
Home service providers when developing operations management tasks.

2 Related Work

The advent of Smart Home brings about the issues of operations management.
Operations management means the configuration, deployment, upgrade, and
monitoring of devices or systems in Smart Home. Obviously, the best way to
address this issue would be to reuse an existing mature standards or technolo-
gies. In network equipment industry, several standards have been proposed for
operations management such as NETCONF[13], MUWS (Management for Using
Web Service)[14], WS-Management[15] and CWMP[10]. As mentioned, CWMP
has been widely deployed in home gateway, and therefore are considered the
most competitive among the standards[9].

As a result, several works have been done for developing management func-
tions based on CWMP. Nikolaidis et al.[6] proposed an MIB-based (Manage-
ment Information Base) framework and a graphical development environment
for control devices in a home network. Other works focused on providing the
tools to assist service engineers to diagnose hazards in Smart Home system [16,
17]. There are relatively fewer studies aim to realize the operations management
in a Smart Home. Rachidi and Karmouch [9] are one of the pioneering works
toward this direction. Based on CWMP, they presented an approach for realizing
self-configuration using MAPE-K model of autonomic computing. This work dif-
fers from Rachidi and Karmouch’s work in that we take a task-centric approach
and focus on different operations management issues, namely self-deployment
and self-diagnosis.

3 Design

In this section, we shall present the approaches for supporting self-deployment
and self-diagnosis using CWMP. Before turning to the details of design, the
essential tasks of deployment and diagnosis must be clarified first.



4

– Deployment tasks: without self-deployment, a service engineer is required
to perform on-site setup and configuration tasks for newly installed system.
Moreover, when users want to buy a new service or to upgrade an existing
service, a service engineer also must be present. Thus, the deployment tasks
are labor intensive. In this work we focus on the following deployment tasks:
1) setup a newly installed system; 2)download and install a new software
module, which is called a Deployment Unit (DU), in CWMP; 3) update an
existing DU.

– Diagnosis tasks: It is widely recognized that robustness is a paramount
concern of Smart Home users [18, 19], since most of the domestic technolo-
gies are expected to work 24-7. The occupants of Smart Homes are usually
non-technical users, so that Smart Home is in lack of professional system
administrator. Since the consumers would be unable to pinpoint the source
of failures [20], the Smart Home system must be highly reliable and be able
to detect and to recover from failures autonomously.

Having considered the essential tasks of self-deployment and self-diagnosis,
let us now turn to detailed mechanisms for accomplishing these tasks, which are
presented in the following sub-sections.

3.1 Supporting Self-Deployment Tasks

Ease of installation is a key factor that determines if a new technology can be
accepted by mass consumer market. As mentioned, installation tasks includ-
ing setting up a new system, a new deployment unit and upgrade an existing
deployment. These tasks can be automated by a defined sequence of CWMP
interactions between CPE and ACS, as shown below.

(a) (b)

Fig. 2: Supporting self-deployment tasks: (a) setup a newly installed system (b)
install a new deployment unit



5

Setup a newly installed system: As depicted in Fig.2a, when a CPE is
installed and boots for the first time, it establishes a connection to ACS using
the factory-default IP address. CPE then sends an Inform 0 BOOTSTRAPE
to ACS, which is an event notification indicates that the CPE boots for the first
time. Meanwhile, CPE also register its identity in ACS’s database (ACSDB) for
further management. After that, CPE sends an Inform 4 VALUE CHANGE
to ACS, and then ACS calls CPE’s setParameter method to configure the
CPE. Finally, CPE sends Inform M VALUE CHANGED, which means
auto-configuration of a newly installed system has been finished.

Install a new deployment unit (DU): In this task, we assume that the user
buys a new DU and users CPE is responsible for downloading and installing the
DU. After the DU is ready for deployment, ACS inserts the new DUs name, latest
version, and download link into a table in ACSDB. Then, CPE sends inform 9
REQUEST DOWNLOAD to ACS and ACS calls download method of CPE
and pass the download link and access token as arguments. After the download
process is complete, CPE sends inform 7 TRANSFER COMPLETE to
ACS. Finally, ACS updates the current DU version number in ACSDB. The
overall process is indicated in Fig.2b.

Check and upgrade a deployment unit: After a DU is installed, CPE pe-
riodically sends inform 2 PERIODIC to ACS to check the version of DU. If
there is a new version available, CPE sends inform 9 REQUEST DOWN-
LOAD to ACS, and then ACS calls CPE download and pass the download link
and access token as arguments. After finishing the download, CPE sends inform
7 TRANSFER COMPLETE to ACS. Again, the last step is to update the
current DU version number in ACSDB. The overall process is indicated in Fig.3.

3.2 Supporting Self-Diagnosis Tasks

As the consumers are usually unable to pinpoint the source of failures, it is
desirable that a Smart Home system being able to detect and to recover from
failures autonomously. In the following, we present our design of realizing self-
diagnosis tasks for CPE and DU using CWMP.

Diagnosing CPE: CWMP defines a set of CPE methods to monitor the status
of CPE. CPE can periodically send inform 2 PERIODIC to ACS to indicate
the ”liveness” of itself. This mechanism is usually called ”heartbeat”. Once ACS
does not receive the heartbeat from CPE, it first tries to reboot CPE by calling
the Reboot method. If CPE does not respond, it assumes that there is some-
thing wrong with CPE and then contacts the service provider automatically.
The overall procedure is shown in Fig.4a.



6

Fig. 3: Supporting self-diagnosing tasks: Check and upgrade a deployment unit

(a) (b)

Fig. 4: Supporting self-diagnosing tasks: (a) diagnose CPE (b) diagnose and re-
cover DU



7

Diagnosing deployment units: Figure 4b depicts the process of diagnosing
and recovering of DU. There are typically several DUs being installed on a CPE.
As the original CWMP does not define event types that indicate software of
hardware failures, we defined two CWMP inform extension using the inform X
prefix, namely inform X HW BROKEN and inform X SW BROKEN.
When CPE finds a DU fails, the CPE sends inform X SW BROKEN to ACS,
and then ACS calls the CPE Reboot method (try to recover DU). After the
CPE is rebooted, it sends inform M REBOOT to ACS. If the problem still
exists, CPE sends inform X HW BROKEN to ACS and then ACS contacts
the service provider automatically.

4 Implementation

This section discuss the implementation issues of our design. Currently, we imple-
ment a working prototype using JAX-WS (Java API for XMLWeb Services) [21].
JAX-WS is a Java API for creating web services. It is mainly used to build web
services and corresponding clients that communicate using XML-based remote
procedure calls, which implemented based on SOAP[11]. The detailed imple-
mentation mechanisms for accomplishing the self-deployment and self-diagnosis
tasks are presented in the following sub-sections.

4.1 Self-Deployment Tasks

As mentioned, deployment tasks are 1) setup a newly installed system, 2) install a
new deployment unit, and 3) check and upgrade a deployment unit. The detailed
steps of implementing setup a newly installed system task is listed below.

Step1: CPE boots

Step2: CPE sends "inform 0 BOOTSTRAP"

Step3: ACS process inform

Step4: CPE sends "inform 4 VALUE CHANGE"

Step5: ACS calls the "setParameterValue" method

Step6: CPE sends "inform M VALUE CHANGED"

To implement the setup a newly installed system task, the CPE Inform and
ACS setPrarmeterValue methods are being used. According to the CWMP spec-
ification, argument type of the CPE Inform method is EventStruct, which is used
to carry required information for the notification. When CPE boots, CPE sends
inform to ACS to notify CPE has booted and then ACS uses setParame-
terValue method to set values which need to be initialized. To implement the
install a new DU and upgrade DU task, we use the JDK TimerTask class to
make CPE send inform to ACS periodically. Then, getParameterValue is called
to get the version number of a DU. Upon a new install or an upgrade is required,
the downlaod method of CPE is called. The following procedure indicates steps
of DU download and upgrade.



8

Step1: CPE regularly]e.g. every n seconds^sends "inform 2 PERIODIC"

Step2: ACS calls the CPE "getParameterValue" to get CPE version number

Step3: ACS compares the version number with latest_version value in ACSDB

Step3: If version number < latest_version, CPE sends "inform 9 REQUEST DOWNLOAD"

Step4: ACS calls the CPE "download"

Step5: CPE sends "inform M download"

Step6: CPE sends "inform 7 TRANSFER COMPLETE"

Step7: Back to Step1

4.2 Self-Diagnosis Tasks

As mentioned, deployment tasks are 1) diagnose CPE and 2) diagnose DU. Let
us first take a look at the detailed steps of diagnosing CPE.

Step1: CPE regularly (e.g. n seconds) sends "inform 2 PERIODIC"

Step2: ACS receives heartbeats from CPE

Step3: ACS does not receive the inform from CPE for a period of time

Step4: ACS calls the CPE "reboot" method

Step5: CPE sends inform "M reboot"

Step6: ACS does not receive the inform from CPE for a period of time

Step7: ACS notifies service provider that the CPE has hardware failure

Similar to the check and upgrade a deployment unit task, CPE regularly
sends heartbeat to ACS as heartbeat messages. When ACS does not receive
heartbeat from CPE, the ACS first tries to reboot the CPE and if it still not
receive the heartbeat form CPE, the ACS notifies service provider that the CPE
has hardware failure. The diagnose DU task starts when the CPE finds that
DU fails. Generally, this is reasonable as CPE and DU located in the same host.
CPE then sends inform to ACS to notify that DU is down. Again, ACS first tries
to restart the failed DU and then if it is still not recovered then ACS notifies
service provider that the CPE has hardware failure. The overall process is listed
below.

Step1: CPE finds that the DU fails

Step2: CPE sends "inform 13 SW BROKEN"

Step3: ACS calls the CPE "reboot" method

Step4: CPE sends "inform M REBOOT"

Step5: If DU still not available

Step6: CPE sends "inform 14 HW BROKEN"

Step7: ACS notifies service provider that the DU has unrecoverable failure

5 Evaluation

To evaluate the proposed approach, we first build two application scenarios to
verify the feasibility. Then, we conducted experiments to test the performance
of performing deployment and diagnosis tasks using the proposed approach.



9

5.1 Feasibility

We constructed application scenarios based on the prototype detailed in Section
4 to show the feasibility. In these scenarios, it is assumed that the user buys the
TV media service, and that the service contains two DUs: TV controller and a
media server. The CPE prototype is implemented and deployed on a Raspberry
Pi Model B+ model and the ACS prototype is deployed on a normal PC.

Deploying the TV media service First, CPE downloads the media server
DU. Then, the DU is downloaded and installed on CPE. From CWMP’s per-
spective, the objective is to install a new DU so that the operations include to
check the CPE version number and sends an inform 9 REQUEST DOWN-
LOAD. After the ACS is ready, it calls download of CPE. Finally, CPE replies
inform 7 TRANSFER COMPLETE to finish this transaction. After that,
the user can enjoy the TV media service, which is provided by connecting TV
to the media server.

Diagnosing the TV media service As the objective is to diagnose the DU
and recover the DU from failures if necessary. In this scenario, the media server
DU does not respond inform 2 PERIODIC for a period of time. CPE detects
the problem and informs ACS. Then, ACS first reboots the broken DU by calling
reboot method of CPE, then CPE responds inform M reboot. Unfortunately,
ACS finds that the DU still not responding. Thus, CPE informs ACS about this
failure via email service and the service provider sends a service engineer to the
user’s home to repair the service.

5.2 Performance

This section reports the experiment results that are performed to evaluate the
required time to download a DU file with various sizes and to study how the
quantity of DUs impacts the performance of diagnosing.

Performance of Deployment Tasks This experiment runs deployment tasks
and measure the total time required starting from CPE downloading to the com-
pletion of installation. We respectively test the file sizes ranges from 10KB to
10MB. Figure 5 shows the experiment results. The experiment is performed re-
peatedly using 10, 20, 40 and 60 CPEs. The turnaround time appears to increase
linearly as the DU size increases. However, there is a steeply change after the
DU size is larger than 1MB. However, as the general size of DUs typically ranges
from 100K to 200K, which, according to the results, can be downloaded within
10 seconds. Also,the turnaround time also increases slightly as the number of
CPEs increases. The increasing trend of turnaround time is consistent among
experiments with different sizes of CPEs.



10

Fig. 5: Performance evaluation of DU deployment

Fig. 6: Performance evaluation of DU diagnosis



11

Performance of Diagnosis Tasks In this experiment, we test the impact
to performance of DU monitoring when number of DU increases. The test is
performed when the number of DUs is 100, 200, 300, 400, 500, 600, 700, 800,
900, and 1000. The experiment is performed repeatedly using 10, 20, 40 and 60
CPEs. The results are depicted in Fig.6, which shows that the increase of DU
number leads to the linear growth of monitor time. Based on this result, the
monitor can be finished within 10 seconds with a reasonable number of DUs
(100-200). Also,the turnaround time also increases slightly as the number of
CPEs increases. Again, the increasing trend of turnaround time is also consistent
among experiments with different sizes of CPEs.

6 Conclusion

This paper present approaches for supporting MAPE-K control loop between the
service provider and the gateway of a Smart Home. Specifically, these approaches
enables self-deployment and self-diagnosis of a Smart Home system based on
CWMP. To relief the burden of developers, we take a task-centric approach,
that is, we first identify the essential tasks for operations management in Smart
Home and then define the interactions among entities using CWMP methods.
The results show that both deployment and diagnosis have good performance
when the DU size and DU number is reasonable. This paper present our fist
step toward the vision of autonomic operations management. In the future, we
are going to investigate how to transparently integrate the smart home network
such as UPnP with the CWMP so that the devices in the home area network
become also manageable.

Acknowledgements. This work is sponsored by Ministry of Science and Tech-
nology, Taiwan, under grant 104-2221-E-004-001 and 104-2815-C-004-008VE.

References

1. Gates, B., Myhrvold, N., Rinearson, P., Domonkos, D.: The road ahead. (1995)
2. Caceres, R., Friday, A.: Ubicomp systems at 20: Progress, opportunities, and

challenges. IEEE Pervasive Computing (1) (2011) 14–21
3. Hnat, T.W., Srinivasan, V., Lu, J., Sookoor, T.I., Dawson, R., Stankovic, J., White-

house, K.: The hitchhiker’s guide to successful residential sensing deployments. In:
Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems,
ACM (2011) 232–245

4. Mennicken, S., Vermeulen, J., Huang, E.M.: From today’s augmented houses to to-
morrow’s smart homes: new directions for home automation research. In: Proceed-
ings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, ACM (2014) 105–115

5. Cetkovic, M., Nemet, N., Samardzic, T., Teslic, N.: Auto-configuration server
architecture with device cloud cache. In: Consumer Electronics Berlin (ICCE-
Berlin), 2014 IEEE Fourth International Conference on, IEEE (2014) 296–298



12

6. Nikolaidis, A.E., Papastefanos, S.S., Stassinopoulos, G., Drakos, M.P.K., Doume-
nis, G., et al.: Automating remote configuration mechanisms for home devices.
Consumer Electronics, IEEE Transactions on 52(2) (2006) 407–413

7. Feminella, J., Pisharoty, D., Whitehouse, K.: Piloteur: a lightweight platform for
pilot studies of smart homes. In: Proceedings of the 1st ACM Conference on
Embedded Systems for Energy-Efficient Buildings, ACM (2014) 110–119

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(2003) 41–50

9. Rachidi, H., Karmouch, A.: A framework for self-configuring devices using tr-069.
In: Multimedia Computing and Systems (ICMCS), 2011 International Conference
on, IEEE (2011) 1–6

10. Bernstein, J., Spets, T.: Cpe wan management protocol. In: absorption in the
earth’s atmosphere, DSL Forum, Tech. Rep. TR-069. (2004)

11. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,
Thatte, S., Winer, D.: Simple object access protocol (soap) 1.1 (2000)

12. Zapata, J., Fernández-Luque, F.J., Ruiz, R.: Wireless sensor network for ambi-
ent assisted living. Wireless Sensor Networks: Application-Centric Design. InTech
(2010) 127–146

13. Enns, R., Bjorklund, M., Schoenwaelder, J.: Netconf configuration protocol. Net-
work (2011)

14. Murray, B., Wilson, K., Ellison, M.: Web services distributed management: Muws
primer. OASIS WSDM Committee Draft (2006)

15. Arora, A., Cohen, J., Davis, J., Golovinsky, E., He, J., Hines, D., McCollum, R.,
Milenkovic, M., Montgomery, P., Schlimmer, J., et al.: Web services for manage-
ment (ws-management). Distributed Management Task Force (DMTF) (2004)

16. Bjelica, M.Z., Golan, G., Radovanovic, S., Papp, I., Velikic, G.: Adaptive device
cloud for internet of things applications. In: Consumer Electronics-China, 2014
IEEE International Conference on, IEEE (2014) 1–3

17. Nemet, N., Radovanovic, S., Cetkovic, M., Ikonic, N., Bjelica, M.Z.: User self-help
module for a device management cloud based on the tr-069 protocol. In: Consumer
Electronics Berlin (ICCE-Berlin), 2014 IEEE Fourth International Conference on,
IEEE (2014) 199–201

18. Edwards, W.K., Grinter, R.E.: At home with ubiquitous computing: Seven chal-
lenges. In: Proc. 3rd International Conference on Ubiquitous Computing (Ubi-
Comp’01). (2001) 256–272

19. Grimm, R., Davis, J., Hendrickson, B., Lemar, E., MacBeth, A., Swanson, S., An-
derson, T., Bershad, B., Borriello, G., Gribble, S., Wetherall, D.: Systems direc-
tions for pervasive computing. In: Proc. 8th Workshop on Hot Topics in Operating
Systems. (2001)

20. Dixit, S., Prasad, R. In: Home Networking Challenges. Wiley-Inderscience (2008)
21. Kohlert, D., Gupta, A.: The java api for xml-based web services (jax-ws) 2.1 (2007)


