考試科目

数主里流計 别 3元青少多条考試時間5月12日(六)第

You need to show your work (that is, how you get the answer) to get points.

- 1. (10 points) Let Y be any random variable. Find c such that E(|Y-c|) is minimized.
- 2. (20 points) Let f be a density function and F its corresponding cdf. Consider the following sampling procedure.

step 1. Sample Y from f

step 2. If $Y \in (a, b)$, set X = Y. Else, go to step 1.

Find the cdf and pdf of X.

- 3. (30 points) Let X and Y be two r.v.'s.
 - (a) Find m(Y) that minimizes $E(X m(Y))^2$.
 - (b) Show that $Var(E(X|Y)) \leq Var X$.
 - (c) When does the equality in (b) hold?
- 4. (20 points) Suppose that $X_t = \rho X_{t-1} + Z_t$, where $|\rho| < 1$ and $\{Z_t\}$ are i.i.d $N(0, \sigma^2)$.
 - (a) Find the distribution of X_t .
 - (b) Find $Cov(X_t, X_{t-h})$.
- 5. (20 points) Consider a linear model:

$$y_i = x_i \beta + e_i, \quad i = 1, ..., n,$$

where e_i are iid $N(0, \sigma^2)$ variates, and β and σ^2 are unknown parameters. Consider the following prior on β and σ^2 :

$$p(\beta, \sigma^2) \propto 1/\sigma^2$$
.

The posterior density of (β, σ^2) is proportional to the prior times the likelihood. That is, $p(\beta, \sigma^2|y) \propto$ $p(\beta, \sigma^2)L(\beta, \sigma^2)$.

- (a) Obtain the joint posterior density $p(\beta, \sigma^2|y)$.
- (b) Obtain the marginal posterior density $p(\sigma^2|y)$.

備