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Abstract

The boosting as a stochastic approximation algorithm is considered. This new interpretation provides an alternative theoretical
framework for investigation. Following the results of stochastic approximation theory a stochastic approximation boosting algorithm,
SABoost, is proposed. By adjusting its step sizes, SABoost will have different kinds of properties. Empirically, it is found that
SABoost with a small step size will have smaller training and testing errors difference, and when the step size becomes large, it
tends to overfit (i.e. bias towards training scenarios). This choice of step size can be viewed as a smooth (early) stopping rule. The
performance of AdaBoost is compared and contrasted.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Boosting is one of the successful ensemble classifiers and has attracted much attention recently. Earlier theoretical
results show that boosting reduces the training error under the weak base hypothesis assumption and upper bounds of
its testing errors can be obtained in some PAC (probably approximately correct) sense, see, for example, Freund and
Schapire (1997). Boosting is also recognized as a large margin algorithm, see, for example, Schapire et al. (1998) and
Breiman (1999). It has been observed that boosting is relatively resistant to overfitting in many practical applications with
less noisy data. These empirical successes motivate theoretical investigations of possible explanations. See, for example,
Schapire (1990), Grove and Schuurmans (1998), Freund and Schapire (1997), Friedman et al. (2000), Schapire et al.
(1998) and Jiang (2002). The readers are referred to Meir and Rätsch (2003) for a review of more recent advancements.
Recent studies provide a much clearer picture of Bayes consistency of boosting. Breiman (2004) shows that population
version boosting is Bayes consistent and Jiang (2004) shows boosting is process consistent for the sample version.
Other asymptotic aspects are also studied, for example Bühlmann andYu (2003) and Zhang andYu (2005). More recent
studies can be found in, for example, Leitenstorfer and Tutz (2007), Merler et al. (2007), Tutz and Binder (2006), Gey
and Poggi (2006) and Kim and Koo (2005,2006).

Although there are many modifications and interpretations of the original AdaBoost, many of its features remain
unclear. The more we know about its properties, the more we can exploit its power. In this paper, the boosting-
like algorithms are viewed as stochastic approximation procedures. Particularly, these algorithms are rendered by
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the Robbins–Monro (RM) procedure in Robbins and Monro (1951). This stochastic approximation viewpoint is then
contrasted with the interpretation of (Discrete) AdaBoost given in Friedman et al. (2000).

Robbins and Monro (1951) develops and analyzes a recursive procedure for finding the root of a real-value function
g(·) of a real variable �. This function is assumed to be unknown, but noise-corrupted observations could be taken
at values of � selected by the experimenter. If the function g(·) were known and continuously differentiable, then
finding its roots becomes a classical problem in numerical analysis. Various procedures such as Newton’s method have
been proposed in this case. However, when the observation is noise-corrupted, these procedures might not work well.
Many modifications and alternatives have been introduced to account for noise. RM procedure and Kiefer–Wolfowitz
(KW) procedure, respectively, proposed in Robbins and Monro (1951) and Kiefer and Wolfowitz (1952) are two of
the most well-known procedures being proposed under stochastic approximation frameworks. For simplicity, only the
rendering based on the deterministic RM procedure will be discussed. The relations of boosting-like algorithms to other
modifications of the RM and KW procedures will be reported elsewhere.

Following the convergence theorem of the RM procedure, we propose a stochastic approximation boosting algorithm,
SABoost. By adjusting the step size of SABoost, it will have different properties. Empirically, if a large step size is
chosen, the training errors of SABoost will decrease quickly and tend to overfit. On the other hand, when a small step
size is chosen, the training errors decrease slowly, and the phenomena of overfitting becomes negligible. In addition,
the SABoost with small step size is more stable than AdaBoost in the sense that no drastic change of training and testing
errors presents during boosting iterations.

The rest of this paper is organized as follows. In order to redescribe AdaBoost using a stochastic approxima-
tion procedure, we will first review AdaBoost and the RM procedure in Sections 2 and 3, respectively. The conver-
gence theorem of the RM procedure is stated in Section 3. Empirical results of some benchmark and the synthesized
data sets are shown in Section 4. Concluding remarks, discussion and some possible future studies are given in
Section 5.

2. FHT’s interpretation

Boosting (refer Freund and Schapire, 1997; Schapire, 1990, for more details) is a learning procedure that starts
with a weak base learner and assigns the misclassified data higher weights in each iteration. Then it takes a weighted
majority vote to predict labels of examples with given feature variables. The process is then repeated T iterations. This
T is known as the boosting time and can be configured by users for early stopping. Although many variations and mod-
ifications of boosting have been proposed over the years, here we will mainly focus on the Discrete AdaBoost for easy
exposition.

To fix notations, let us consider a supervised learning problem with binary responses where training data (xi, yi)
n
1,

testing data (x′j , y′j )
m
1 and yi, y

′
j= ∈ Y= {±1} are given. Here x’s and x′’s are “input” or “explanatory” variables and

y’s and y′’s are output or response variables. It is desired to find a good machine or classifier F based on the information
of training data such that F can predict y′ for each x′ as correctly as possible. Usually the performance of F is measured
through its training error (TE) and testing/generalization error (GE) defined as

TE= 1

n

∑
i

1[yi �=F(xi )] and GE= 1

m

∑
j

1[y′j �=F(x′j )].

Note that it is often assumed that X and Y arised from some (unknown) joint distribution. Rigorously, testing error
should be EY,X1[Y �=F(X)] rather than GE we defined above. However, the sampling analog GE can be considered as an
estimate of EY,X1[Y �=F(X)]. For large m, GE is a satisfactory estimator in the sense of (statistical) consistency.

Now, the Discrete AdaBoost algorithm:

Discrete AdaBoost.

(1) Start with weights Dt(i)= 1/n, i = 1 to n.
(2) Repeat for t = 1 to T

• Obtain ht (x) from weak learner h using weighted training data with respect to Dt .
• Compute �t = EDt 1[y �=ht (x)], �t = log 1−�t

�t
.
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• Update i = 1 to n,

Dt+1(i)= 1

Zt

Dt(i) exp[�t1[yi �=ht (xi )]],
where Zt is the normalizer.

(3) Output the classifier F(x)= sgn[∑T
t=1�t ht (x)].

Friedman et al. (2000) (FHT) show that

Remark 1. The Discrete AdaBoost (population version) builds an additive logistic regression model via Newton-like
updates for minimizing E(e−YF(X)).

This is an insightful and powerful observation. Immediately, it motivates construction of new boosting-like algorithms
and provides a statistical framework for further theoretical investigations.

Specifically, let Y ∈ {±1} denote the labels and X be the domain of feature variables. Suppose F is a real-valued
function mapping X to R. Then in binary classification problems, our goal is to predict Y by the sign of estimated
F based on a set of labeled examples. Friedman et al. (2000) render AdaBoost as a Newton update minimizing an
approximate risk J (F ) ≡ EX,Y [e−YF(X)] ≈ EX,Y 1[YF(X)<0] and obtain the update formula

F(x)← F(x)+ 1

2
log

(
1− err

err

)
f (x), (1)

w(x, y)← w(x, y) exp

[
log

(
1− err

err

)
1[y �=f (x)]

]
, (2)

where f (x)= sgn(Ew(Y |x)) and err= Ew[1[Yf (x)<0]|x].
Alternatively,

Ft+1(x)= Ft(x)+ �t f (x), (3)

where �t = 1
2 log( 1−�t

�t
), wt(x, y)= exp(−yF t (x)), Ewt g(x, Y ) denotes EY |x[wt(x, Y )g(x, Y )]/(EY |xwt (x, Y )) and

�t = Ewt 1[yf (x)<0].
Note that this interpretation is based on minimization of an (approximated) conditional risk where X is given.

Furthermore, it is in nature a population-version theory in the sense that X andY are considered as random vector/variable.
And when X is conditioned, the optimization problem is essentially a problem of sample size 1. This conditional risk
approach greatly simplifies the theoretical analysis.

3. Stochastic approximation

Minimization of conditional risk is hardly a new task for statisticians. Specifically, now the objective is to find F∗
such that

F∗(x)= arg min
F(x)

�(F (x)) (4)

where �(F (x))= EY |xL(Y, F (x)). Under some regularity conditions, this F∗ is also a solution to

�(F (x)) ≡ �
′
(F (x))= EY |xL

′
(Y, F (x))= 0 (5)

where L
′
(Y, F )= �L(Y, F )/�F . This problem has long been studied from a stochastic approximation viewpoint. See

Lai (2003) for a review on stochastic approximation. We consider here the most well-known RM procedure and restate
the RM deterministic (RM-D) algorithm given in Duflo (1997) in our current context and notations. The readers are
referred to Duflo (1997) and Robbins and Monro (1951) for their original formulation.

RM-D Algorithm.

• Choose F0 arbitrarily.
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• Iterate t = 0, 1, . . . ,

gt+1(x)= �(Ft (x)),

Ft+1(x)= Ft(x)− �t (gt+1 + �t+1), �t , �t+1 �0.

Note that in usual boosting-like algorithms, there is no �t terms, that is, �t = 0. However, as we will see immediately
in the coming proposition, with suitable regularization, such �’s can be introduced without affecting the convergence.

Although Friedman et al. (2000) provide a good interpretation of boosting, their Result 1 leaves us no guidance about
how to check the convergence of Newton updates. In contrast, the convergence of stochastic approximation algorithms
have been established under various conditions. The following proposition is an adaption of the convergence theorem
of the RM-D algorithm; for example, see Sections 1.2 and 1.4 in Duflo (1997). Here we restate Proposition 1.2.3 in
Duflo (1997) in our notations. Note that the dependency of x is notationally suppressed.

Proposition 2 (RM-D convergence). If � is a monotonic continuous real function such that �(F∗)= 0 and for all F

�(F ) (F − F∗) > 0,

|�(F )|�K(1+ |F |) for some K .

Suppose {�t }, {�t } are two sequences of real numbers and �t �0. Define

Ft+1 = Ft − �t (�(Ft )+ �t+1). (6)

If �t decreases to 0 such that
∑

t

�t =∞;
∑

t

�t�t <∞, (7)

then Ft converges to F∗ for any initial F0.

Sequences �t and �t control the speed of approximation of the stochastic approximation algorithm. In particular, �t

controls the “step size” of stochastic approximation. The common choice for �t is �/t and �t = 0, with some � > 0.
When the exponential criterion is employed, that is L(Y, F )= e−YF , and then L′(Y, F )=−Y e−YF , the algorithms

can be further simplified and render forms similar to the original AdaBoost.

RM-D Algorithm with Exponential Criterion.

• Choose F0 arbitrarily.
• Iterate t = 0, 1, . . . ,

gt+1(x)= − EY |xY exp(−YF t (x))

Ft+1(x)= Ft(x)− �t gt+1(x)

= Ft(x)+ �t (EY |xwt (x, Y ))Ewt (Yt+1|x), �t �0 (8)

where wt(x, y)= exp(−yF t (x)) and again

Ewt g(x, Y )= EY |x[wt(x, Y )g(x, Y )]
EY |xwt (x, Y )

.

The original form (6) suggests our approach is closely related to Friedman (2001,2002) since the gradient of the
conditional risk is employed in updating iteration. However, Friedman (2001,2002) are of the sample-version theories.
Both account for the finite sample in choosing the optimal parameters in the classifier F. Furthermore, the form of
the possible classifiers are explicitly given as the addition of some simple functions (base learners). Our approach
is a population-version theory. Our formulation is more related to Friedman et al. (2000). This approach does not
specify the explicit form of the classifiers and therefore not directly allows optimization of the parameters. Although
this population approach simplifies the notations and analytical derivation, it provides no clear guideline as how to use
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the data and how to utilize the base learners. Nonetheless, our results suggest stochastic approximation can serve as an
alternative framework for investigating boosting-like algorithms.

The iterative algorithms (8) and (3) bear formal similarity. Under the conditions of Proposition 2 the convergence
of (8) can be established. On the hand, the convergence of the population-version Discrete AdaBoost (3) is less clear.
It should be noted that the population-version results do not imply the corresponding algorithms will have the same
convergence when working with finite sample data.

It follows from Proposition 2 that we can manipulate sequences {�t }, {�t } such that the boosting procedures will have
different kinds of properties. These properties will be illustrated with some bench mark data sets and synthesized data in
the next section. In contrast with the original AdaBoost, we call this procedure SABoost. SABoost is similar to Discrete
AdaBoost except that the “step size” �t is replaced by st = �tEY |xwt (x, Y ) where �t = �/t for some � > 0. This choice
of �t is also supported by a widely stated sufficient condition for convergence of a stochastic approximation procedure

∞∑
t=1

�t =∞;
∞∑
t=1

�2
t <∞ (9)

under quite general settings. See, for example, Duflo (1997). With choices of � and thus the step size, SABoost can
have quite different performances.

4. Empirical results

4.1. Bench mark data sets

For evaluating the performances of SABoost, we conduct experiments with both synthesized and some bench mark
data sets. Here we first compare the performances of SABoost with Discrete AdaBoost with decision stumps (DS) as
base learners for both procedures. Different step sizes are used in SABoost. In our experiments, we set �t = 0, �t = �/t

and � > 0 is a positive real number and choose �=0.5, 1, and 1.5. All experiments are done on PC’s running Window XP
system. The statistical programming language R is used for all experiments. (cf. Verzani, 2005, and www.r-project.org
for the details of language R.)

In order to prevent the slow convergence rate of SABoost due to the small step size �, we propose a hybrid procedure
combining SABoost and AdaBoost together in the following way: (1) Let T be the pre-chosen total iteration number
and conduct the original Discrete AdaBoost procedure in the first [	 ∗ T ] (	 ∈ (0, 1)) iterations, where [A], A ∈ R,
denotes the largest integer less than A. (2) Switch to SABoost for the rest T − [	 ∗ T ] of iterations. It will be called
Hybrid SABoost here. In all our experiments, we set 	= 0.25. Specifically

SABoost. (1) Start with weights Dt(i)= 1/n, i = 1 to n and Ct = 1.

(2) Repeat for t = 1 to T

• Obtain ht (x) from weak learner h using weighted training data with respect to Dt .
• Compute �t = EDt 1[y �=ht (x)], st = sgn(0.5− �t )�t ∗ Ct .

• Update i = 1 to n,

Dt+1(i)= 1

Zt

Dt(i) exp[st1[yi �=ht (xi )]],

where Zt is the normalizer.
• Update Ct =

( 1
n

∑n
i=1 exp[−yi ∗ Ft(xi)]

)−1

(3) Output the classifier F(x)= sgn[∑T
t=1stht (x)].

Hybrid-SABoost. (1) Start with weights Dt(i)= 1/n, i = 1 to n and Ct = 1.

(2) Repeat for t = 1 to [	 ∗ T ]
• Obtain ht (x) from weak learner h using weighted training data with respect to Dt .
• Compute �t = EDt 1[y �=ht (x)], st = log 1−�t

�t
.

http://www.r-project.org
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Table 1
Testing errors of SABoost, AdaBoost with Decision Stumps (DS) as weak base learners

Method SABoost �= 1.0 AdaBoost with DS

Ionosphere 10.11± 5.58 10.83± 4.96
Bupa 27.14± 6.98 28.74± 6.62
Pima 24.36± 4.37 27.17± 4.84
WDBC 4.28± 3.02 2.52± 2.15

Diabetes 24.75± 1.65 24.92± 1.63
German 24.38± 2.41 24.52± 2.08
Heart 19.49± 3.78 20.49± 3.84
Splice 8.62± 0.51 9.14± 0.62
Twonorm 12.14± 3.03 4.61± 0.41
Waveform 13.04± 0.83 13.04± 0.68
Breast 29.51± 4.79 29.58± 4.7

There are 50 replications and 1000 iterations for Ionosphere, Bupa liver-disorder, Pima Indian-Diabetes, and WDBC breast-cancer using random
sampling. For Breast, Diabetes, German, Heart, Splice Twonorm, and Waveform, we follow the original partitions in IDA Benchmark Repository.
Thus, there are 100 replications and 200 iterations for each of them except Splice. There are only 20 combinations in Splice.

• Update i = 1 to n,

Dt+1(i)= 1

Zt

Dt(i) exp[st1(yi �=ht (xi ))],

where Zt is the normalizer.

(3) Repeat for t = [	 ∗ T ] + 1 to T.

• Obtain ht (x) from weak learner h using weighted training data with respect to Dt .
• Compute �t = EDt 1[y �=ht (x)], st = sgn(0.5− �t )�t ∗ Ct .

• Update i = 1 to n,

Dt+1(i)= 1

Zt

Dt(i) exp[st1[yi �=ht (xi )]],

where Zt is the normalizer.
• Update Ct =

( 1
n

∑n
i=1 exp(−yi ∗ Ft(xi))

)−1
.

(4) Output the classifier F(x)= sgn[∑T
t=1stht (x)].

The purpose of the Hybrid method is to accelerate the convergence speed by replacing part of iteration in the early
stages of SAboost by AdaBoost. Nonetheless, as we expected, it also inherits some properties of AdaBoost. Thus we
expect it to have performance between the AdaBoost and SABoost. We do test for other 	 (say, 	 = 0.5), but the
difference is rather small for the case of T = 200 and is omitted in this report. It may have bigger differences for larger
T , but we did not conduct an exhaustive simulation for this point.

Our bench mark data sets are from the following two sources: (1) UCI machine learning repository (Blake and
Merz, 1998) and (2) IDA Benchmark Repository. Table 1 shows testing error rates of SABoost and the AdaBoost with
DS as weak base learner. The data sets Ionosphere, Bupa liver-disorder, Pima Indian-diabetes and Wisconsin breast
cancer (Wdbc) are from UCI. We conduct 50 replications and 1000 iterations for each of them. In each replication, we
randomly sample one-tenth of the data for testing and use the rest of the data for training.

The other data sets in Table 1 are from IDA Benchmark Repository, which have been used in Rätsch et al. (2001)
and Mika et al. (1999) (cf. www.boosting.org). There are 100 pre-partitioned training and testing pairs for each of
them. (With only one exception—Splice, which has only 20 pre-partitioned combinations.) The results in this portion
of Table 1 are obtained under their original training-testing setup. Overall, SABoost (with �= 1) delivers comparable
or better performances than AdaBoost.

http://www.boosting.org
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Table 2
SA Boosting with different step sizes

Data set �= 0.5 �= 1.5 Hybrid (�= 0.5)

Ionosphere 9.94± 5.08 11.50± 5.47 10.00± 4.86
Bupa 26.46± 6.65 27.26± 6.66 28.51± 6.64
Pima 25.76± 5.00 26.68± 4.11 25.53± 4.81
WDBC 4.21± 2.77 3.79± 2.85 2.45± 2.09

Diabetes 24.44± 1.74 25.18± 1.90 24.61± 1.64
German 24.13± 2.26 24.81± 2.40 23.97± 2.31
Heart 17.92± 3.89 20.10± 3.84 19.75± 3.50
Splice 8.96± 0.49 8.91± 0.56 8.77± 0.56
Twonorm 5.67± 0.40 13.03± 3.46 10.39± 2.26
Waveform 12.86± 0.54 14.62± 1.61 12.89± 0.58
Breast 28.58± 4.72 29.84± 4.62 29.09± 4.65

Table 3
The mean and standard deviation of the absolute values of differences between training and testing errors(in percentage) for AdaBoost(DS) and
SABoost(DS with �= 0.5)

Data set AdaBoost(DS) SABoost(DS)

Ionosphere 10.83± 4.96 6.82± 4.69
Bupa 24.54± 7.19 8.49± 6.11
Pima 16.52± 5.17 6.75± 5.33
WDBC 2.52± 2.15 3.08± 2.14

Diabetes 11.19± 2.20 5.27± 2.66
German 6.08± 2.73 3.66± 2.61
Heart 19.98± 4.05 7.78± 5.03
Splice 4.69± 1.05 1.18± 0.84
Twonorm 4.61± 0.41 5.21± 0.55
Waveform 13.04± 0.68 8.24± 1.39
Breast 8.97± 5.08 7.60± 4.80

To study the effect of step size, we also try different �’s with SABoost. Table 2 shows the testing errors of SABoost(DS)
with different step sizes, and of the hybrid method with 	 = 0.25. Note that the performances of SABoost with
� = 1.5 are very similar to AdaBoost. The results of Hybrid stay between SABoost with � = 0.5 and AdaBoost as
expected.

Although the testing errors are almost always the focus in performance evaluation of classifiers, it is important to
look at the other properties. For boosting-like algorithms, the phenomenon of overfitting is a long standing issue and
of practical implication. For practitioners, the smaller the differences between training and testing error, the better. It
will be a waste of time to run an interminable boosting iteration while overfitting occurs. Although the overfitting may
not be well defined, here we try to identify it using differences between training and testing errors. Table 3 summarizes
the means and variations of the differences between training and testing errors at each iterations for both AdaBoost and
SABoost (�= 0.5). It is clear to see that the means and variances (standard deviations) of SABoost are almost always
smaller than AdaBoost.

Fig. 1 shows both training and testing errors at each iteration (average of 50 replications) of SABoost, Hybrid
SABoost and AdaBoost applying to the Bupa data set. Fig. 2 shows the error rate curves of all three procedures.
It is clear that the SABoost have the smallest testing error among three methods in most of cases. In addition,
it also have the smallest differences between training and testing errors. This is a good property for practitioners
if they want to decide when to stop the boosting iteration based on the progress of training error. The results for
other data sets are similar and then omitted. These patterns are also observed in experiments using synthesized data
(see Table 4).
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Fig. 1. Bupa liver-disorder: The solid lines are Training and testing error curves of AdaBoost with decision stumps as weak base learner. The dot
lines are training and testing errors of SABoost with �= 0.5. The dash lines are for hybrid method which first has 250 AdaBoost iterations and then
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Fig. 2. Error rate curves of Diabetes, German, Heart, Splice, Twonorm and Waveform. All methods here use decision stumps as weak base learners.
Please see Fig. 1 for graph legend.

4.2. Experiments with synthesized data

In this simulation study, data are generated from a 5 dimension concentric circles. The sample size is 500 and
the ratio of size of positive responses y’s to the size of negative y’s is approximately equal to 1. Only the first two
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Table 4
Error rates (in %) of AdaBoost, SABoost (�= 0.5, 1) with different base learner (SVM with Linear Kernel Polynomial Kernel with degree = 3 and
coef. = 1 and RBF kernel default parameter)

Base learner SVM-Linear

Methods GE (TE) |TE− GE|
AdaBoost 29.6 (27.3) 2.93± 2.27
SABoost �= 0.5 32.7 (32.0) 2.30± 1.57
SABoost �= 1 32.1 (31.9) 2.42± 1.63

Base learner SVM-Polynomial
AdaBoost 22.02 (20.35) 2.45± 1.65
SABoost �= 0.5 21.87 (20.87) 2.45± 1.57
SABoost �= 1 21.95 (20.89) 2.32± 1.63

Base learner SVM-RBF
AdaBoost 24.67 (18.11) 6.56± 2.33
SABoost �= 0.5 23.27 (19.76) 3.79± 2.34
SABoost �= 1.0 24.75 (20.38) 4.59± 2.40

Testing error (GE) and Training Error (TE).

dimensions of data are used as feature variables. The “weak learner”s used here are SVM with linear, polynomial
(degree 3) and RBF kernels. The number of boosting iterations is 200 with 50 replications for each setup. We use step
sizes � = 0.5 and 1 for SABoost. The results are summarized in Table 4. We can see that the standard deviation of
the differences of absolute value of training and testing errors for SABoost with �= 0.5 is the smallest one among all
boosting procedures. For reference purposes, the testing errors of SVM with correspondent kernels are also recorded
therein. The comparison of SVM using different base learners is to know (empirically) how the choice of the base
learners affect the performance of AdaBoost and SABoost. It is observed that SABoost with the SVM-Polynomial and
�= 0.5 yields the best performance in the sense that it has the smallest testing error and a small difference of training
and testing errors. In a way, SVM-Polynomial lies between the SVM-Linear and SVM-RBF. Possibly, it is suitably
simple base learner for the synthesized data sets.

5. Conclusion and discussion

In this study, we raise a stochastic approximation interpretation for boosting-like algorithms. This stochastic ap-
proximation viewpoint provides some new insights and tools for boosting-like algorithms. It also suggests some more
flexible ways to construct new boosting algorithms such as choices of weak base learners with suitable sequences of
�t ’s. In addition, an SABoost algorithm is proposed based on the convergence theory of the RM procedure. For suitable
choices of step size, SABoost performs similarly or better than the original AdaBoost with the same weak base learner
in both synthesized and bench mark data sets.

It should be emphasized that the focus of current paper is on the understanding of boosting rather than proposing a
better or best boosting algorithm. There are quite a few variations of boosting-like algorithms improved upon AdaBoost
for variety of problems to date. We do not claim that SABoost is the best one. Nonetheless, under the similar boosting
scheme, the simple choice of �t , for example, �/t can deliver comparable and sometimes better performance than
the one with the original �t . Our observation suggests that the choice of step size deserves a closer investigation.
Interestingly, the condition (9) which leads to �/t is also noted in Zhang and Yu (2005). In light of recent results, for
example, Jiang (2004) and Meir and Rätsch (2003) (Section 2 and references therein) suggest regularization is needed
for boosting, particularly for noisy data. Regularization, loosely speaking, can be achieved by imposing constraints on
the base functions or through early stopping. Note that our choice of �t = �/t decreases to 0 and thus can be viewed as
a smooth stopping rule.

Although fine tuning of � or 	 can improve the performance of SABoost or Hybrid SABoost, it also raises the concern
that the improvement is made at the cost of introducing extra parameters. We recognize the possibility. Nonetheless,
we emphasize that even SABoost with naive choice of �, say � = 1(�t = 1/t) have comparative performance with
AdaBoost in many examples we studied. Our observation suggests that the property of boosting-like algorithm can be
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investigated under a simpler, data-independent �t contrasting to the original �t . Our experiments with Hybrid SABoost
reveal that the step sizes in early stage of boosting can greatly affect the performances of boosting. Therefore, the
boosting iterations should be understood at least from two parts: the early iterations which determines large part of
the reduction of TE and GE; the latter iterations should be suitably regularized or early stopped preventing overfitting.
Two ensuing questions are under current investigation.

1. How to choose a good �t for SABoost for a given base learner (with some distribution information of the data)?
2. What base learners will produce �t in AdaBoost which are essentially equivalent to �t in SABoost (in terms of the

convergence rate of step size)?
In addition, the stochastic versions and the KW parallels will be investigated in another paper.
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