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BY
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Abstract. In this paper we work with the ordinary equa-

tion u
′′
−u

p = 0 and obtain some interesting phenomena concern-

ing blow-up, blow-up rate, life-span, zeros, critical points and the

asymptotic behavior at infinity of solutions to this equation.

Introduction. In our papers [1, 2, 3] we studied the semi-linear wave

equation �u + f (u) = 0 under some conditions, and we found some inter-

esting results on blow-up, blow-up rate and the estimates for the life-span of

solutions, but no information on the singular set. Here we want to deal with

the particular cases in lower dimensional wave equations. We hope that

the experiences gained here will allow us to deal with more general lower

dimension later.

Consider stationary, one-dimensional semilinear wave equation











u′′ − up = 0, p ∈ (0, 1) ,

u (0) = 0 = u′ (0) .

After some computations one can find that the equation has infinite many
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solutions given by

uc (t) =











0, t ∈ [0, c] ,

cp (t − c)
1

1−p , t > c,

where cp = (1 − p)2/(1−p) (2p + 2)1/(1−p). Thus, in particular, the solutions

of the above equation in general are not unique. It is clear that these func-

tions up, p ≥ 1, u ≥ 0 are locally Lipschitz, and by the standard theory,

the local existence and uniqueness of classical solutions is applicable to the

equation










u′′ − up = 0, p ∈ (1,∞) ,

u (0) = u0, u′ (0) = u1.
(1)

Our study is motivated by the research on Chinese calligraphy. Neglect-

ing the friction force of the paper on which a calligrapher creates his work

through a handwritings brush (in Chinese, maue bie) with mass m (t) at

time t, the displacement u (t) of the brush on reispaper (rice paper) at time

t is governed by the Newtons’ second law of motion with the force F (t)

(

m (t)u′
)′

(t) = F (t) .(0.1.1)

Normally, the force F (t) depends on the displacement u (t) [4]1, that is

F (t) = F (u (t)) . Experimentally, the change rate of the force is proportional

to the change rate of displacement [4], that is, there is a real p so that

dF (t)

dt
F (t)

= p

du (t)

dt
u (t)

.

By some calculation we find the form of the force F (u (t)) = cu (t)p for some

constant c.

1In the Han-Dynasty the famous calligrapher Tsai-Iung had already this opinion.
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Note that in the normal cases, and particularly for the beginner, the

mass of their handwriting brushes vary with time due to the strength of hand

and the intake of ink. For simplicity, we may assume that the mass depends

upon the time periodically, in piecewise time interval; in other words,

m (t) =







































m1 − k1t, 0 ≤ t ≤ t1,

m2 − k2t, t1 < t ≤ t2,

...

mn − knt, tn−1 < t ≤ tn,

where ki and mi are positive constants depend on the authors writingsusages.

To some calligraphers the mass of their brushes play no roll, and thus

the mass of that brushes are all the same, in another words, m (t) = m for

some constant m, therefore, the equation (0.1.1) becomes

u′′ (t) =
c

m
u (t)p .(0.1.2)

If we set v (t) = (m/c)1/(p−1) u (t), then the equation (0.1.2) becomes v′′ (t) =

v (t)p , in the form of (0.1) . Thus, the model of problem (0.1) describes a

calligrapher with force up creating his works in real action. The initial

values u0 and u1 are non-negative. For p > 1, the null solution u (t) ≡ 0,

u0 = 0 = u1, corresponds to routine, uninspired works. When one is in an

outburst of enthusiasm for the writing, then in a short time there were some

burned-curled-like curve would be created; in other words, for Eu (0) < 0 or

E (0) > 0 and u1 > 0, there exists a finite number T ∗ such that u (t)−1 → 0

as t → T ∗, c.f. Theorem 3 and 4.

From the observations, when the characteristic p of the calligrapher is

smaller than 1, then their works could be good controlled or in some sense

“nachmacht” (duplicated); mathematically, u (t) ≤ k (t ± c)θ, θ > 0.
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These above-mentioned phenomena will be analyzed in the present paper

mathematically bases on the model of the form (0.1).

We discuss the problem (0.1) in two parts, p > 1 and p < 1.

Part A. p > 1.

Notation and Fundamental Lemmas. For a given solution u (t) of

(0.1) we set

Eu (0) = u2
1 −

2

p + 1
up+1

0 , Ju (t) = u (t)−
p−1
2 .

Definition. A function g : R → R is said to have a blow-up rate q if g

exists only in finite time, that is, there is a finite number T ∗ such that the

following is valid

lim
t→T ∗

g (t)−1 = 0(0.2)

and that there exists a non-zero β ∈ R with

lim
t→T ∗

(T ∗ − t)q g (t) = β,(0.3)

in this case β is called the blow-up constant of g.

Since the solutions for the equation (0.1) is unique, we can rewrite

Ju (t) = J (t) and Eu (t) = E (t) . From some elementary calculations we

obtain the following Lemma 1.

Lemma 1. Suppose that u is the solution of (0.1), then we have

E (t) = u′ (t)2 − 2

p + 1
u (t)p+1 = E (0) ,(0.4)

(p + 3) u′ (t)2 = (p + 1) E (0) +
(

u2 (t)
)

′′

,(0.5)
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J ′′ (t) =
p2 − 1

4
E (0) J (t)

p+3
p−1(0.6)

and

J ′ (t)2 =J ′ (0)2− (p − 1)2

4
E (0) J (0)

2(p+1)
p−1 +

(p − 1)2

4
E (0) J (t)

2(p+1)
p−1 .(0.7)

The following Lemma is easy to prove so we omit the arguments.

Lemma 2. If g (t) and h (t, r) are continuous with respect to their

variables and the limit limt→T
∫ g(t)
0 h (t, r) dr exists, then

lim
t→T

∫ g(t)

0
h (t, r) dr =

∫ g(T )

0
h (T, r) dr.

I. Estimates for the life-spans. To estimate the life-span of the

solution of the equation (0.1), we separate this section into three parts,

E (0) < 0, E (0) = 0 and E (0) > 0. Here the life-span T of u means that u

is the solution of problem (0.1) and the existence interval of u is [0, T ) so

that the problem (0.1) has the solution u ∈ C̄2 (0, T ) and u make sense only

in this interval [0, T ).

I.1. E (0) ≤ 0. In this subsection we deal with the case that E (0) < 0

and E (0) = 0, u0u1 > 0. The case that E (0) = 0 and u0u1 ≤ 0 will be

considered in section 3 and section 4. We have the following result.

Theorem 3. If T is the life-span of u and u is the positive solution of

the problem (0.1) with E (0) < 0, then T is finite. Further, for u0u1 ≥ 0 we

have

T ≤ T ∗

1 (u0, u1, p) =
2

p − 1

∫ J(0)

0

dr
√

k1 + E (0) rk2

;(1.1.1)
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for u0u1 < 0,

T ≤ T ∗

2 (u0, u1, p)

(1.1.2)

=
2

p − 1





∫ k

0

dr
√

k1 + E (0) rk2

+

∫ k

J(0)

dr
√

k1 + E (0) rk2



 ,

where k1 :=
2

p + 1
, k2 :=

2p + 2

p − 1
and k :=

(

2

p + 1

−1

E (0)

)
p−1
2p+2

.

Furthermore, if E (0) = 0 and u0u1 > 0, then

T ≤ T ∗

3 :=
2

p − 1

u0

u1
.(1.1.3)

Proof. Under the condition, E (0) < 0, we know immediately that u2
0 >

0; otherwise we get u2
0 = 0, that is, u0 = 0, then E (0) = u2

1 ≥ 0; and this

contradicts to E (0) < 0. In this situation we divide the proof of the Theorem

into two cases, u0u1 ≥ 0 and u0u1 < 0.

(i) u0u1 ≥ 0. By identity (0.5) we find that















2uu′ (t) ≥ 2u0u1 − (p + 1) E (0) t, ∀t ≥ 0,

u2 (t) ≥ u2
0 + 2u0u1t −

p + 1

2
E (0) t2, ∀t ≥ 0.

(1.1.4)

From identity (0.7) , u0u1 ≥ 0 and the fact J ′ (t) = −p − 1

2
u (t)−

p−1
2 u′ (t) <

0, it follows that

J ′ (t) = −p − 1

2

√

k1 + E (0) J (t)k2 ≤ J ′ (0) , ∀t ≥ 0,(1.1.5)

where k1 = u−p−1
0 u2

1 − E (0) u
2− p+1

2
0 =

2

p + 1
and

J (t) ≤ u
−

p−1
2

0 − p − 1

2
u
−

p+1
2

0 u1t, ∀t ≥ 0.
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Thus, there exists a finite number T ∗

1 (u0, u1, p) ≤ 2
p−1

u0
u1

such that

J (T ∗

1 (u0, u1, p)) = 0 and u (t) → ∞ for t → T ∗

1 (u0, u1, p) . This means that

the life-span T of u is finite, that is, T ≤ T ∗

1 (u0, u1, p) . Now we estimate

this life-span T ∗

1 (u0, u1, p) .

By identity (1.1.5) and the fact that J (T ∗

1 (u0, u1, p)) = 0 we find that

∫ J(0)

J(t)

dr
√

k1 + E (0) rk2

=
p − 1

2
t, ∀t ≥ 0,(1.1.6)

and hence we get the estimate (1.1.1).

(ii) u0u1 < 0. For brevity, we only prove existence of critical point

t0 (u0, u1, p) of u, that is, u′ (t0 (u0, u1, p)) = 0 and compute it later in section

III. By inequality (1.1.4), u0u1 < 0 and the convexity of u2 we can find a

unique finite number t0 (u0, u1, p) such that



























u (t) u′ (t) < 0 for t ∈ (0, t0 (u0, u1, p)) ,

uu′ (t0 (u0, u1, p)) = 0,

uu′ (t) > 0 for t > t0 (u0, u1, p) ,

(1.1.7)

and u (t0 (u0, u1, p))2 > 0. If not, then u (t0 (u0, u1, p)) = 0, thus

E (0) = E (t0 (u0, u1, p)) = u′ (t0 (u0, u1, p))2 ≥ 0;

yet this is in contradiction with E (0) < 0.

Thus we conclude that

u2 (t) > 0, ∀t ≥ 0.

Hence we get u′ (t0 (u0, u1, p)) = 0,

E (0) = − 2

p + 1
u (t0 (u0, u1, p))p+1
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and

J (t0 (u0, u1, p))k2 =
2

p + 1

−1

E (0)
.

After arguments similar to the step (i), there exists a T ∗

2 (u0, u1, p)

such that the life-span T of u is bounded by T ∗

2 (u0, u1, p) , that is, T ≤
T ∗

2 (u0, u1, p). On the analogy of the above argumentation, using (1.1.7) and

(0.7) we get























J ′ (t) = −p − 1

2

√

k1 + E (0)J (t)k2 , ∀t ≥ t0 (u0, u1, p) ,

J ′ (t) =
p − 1

2

√

k1 + E (0) J (t)k2, ∀t ∈ [0, t0 (u0, u1, p)] .

(1.1.8)

Therefore we have



































∫ J(t0)

J(t)

dr
√

k1 + E (0) rk2

=
p − 1

2
(t − t0) , ∀t ≥ t0,

∫ J(t0)

J(0)

dr
√

k1 + E (0) rk2

=
p − 1

2
t0.

(1.1.9)

where t0 = t0 (u0, u1, p) . Utilizing (1.1.9) and the fact that J (t0 (u0, u1, p))k2

= 2
p+1

−1
E(0) and J (T ∗

2 (u0, u1, p)) = 0 we obtain the estimate

T ∗

2 (u0, u1, p) = t0 (u0, u1, p) +
2

p − 1

∫ k

0

dr
√

k1 + E (0) rk2

.(1.1.10)

This estimate (1.1.10) is equivalent to (1.1.2).

(iii) E (0) = 0. Now we prove (1.1.3) . By identity (0.6) in Lemma 1

and E (0) = 0 we get J ′′ (t) = 0 ∀t ≥ 0. From the positiveness of u0u1, it

follows that J ′ (0) < 0 and

J (t) = u
−

p−1
2

0 − p − 1

2
u
−

p+1
2

0 u1t, ∀t ≥ 0.



2004] THE DIFFERENTIAL EQUATION u
′′
− u

p = 0 153

Thus we conclude that

u (t) = u0

(

1 − p − 1

2

u1

u0
t

)

−
2

p−1

, ∀t ≥ 0.(1.1.11)

Therefore the estimate (1.1.3) follows.

I.2. E (0) > 0, u0 ≥ 0.

In this subsection we consider two cases E (0) > 0, u0 > 0 and E (0) > 0,

u0 = 0, u1 > 0.

We have the following blow-up result.

Theorem 4. Suppose that

(i) u0 > 0 or

(ii) u0 = 0 and u1 > 0.

Then the life-span T of the positive solution u of the problem (0.1) with

E (0) > 0 is finite, that is, u is only a local solution of (0.1).

Further, in case of (i) we have the estimates

T ≤ T ∗

4 (u0, u1, p) =
2

p − 1

∫ J(0)

0

dr
√

k1 + E (0) rk2

, u1 ≥ 0;(1.2.1)

in the case of (ii)

T ≤ T ∗

5 (u0, u1, p) =
2

p − 1

∫

∞

0

dr
√

k1 + E (0) rk2

.(1.2.2)
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Proof. i) u0 > 0. By identity (0.6) in Lemma 1 we obtain































k3J
′′ (t) = (k3J (t))q ,

k3J (0) = k3u
−

p−1
2

0 ,

k3J
′ (0) =

1 − p

2
k3u

−
p+1
2

0 u1,

(1.2.3)

where k3 :=
(

p2
−1
4 E (0)

)
p−1
4

and q := p+3
p−1 .

Now we set

Ẽ (t) := k2
3J

′ (t)2 − 2

q + 1
(k3J (t))q+1 ,

after some calculations we see that Ẽ (t) is a constant and

Ẽ (t) = Ẽ (0) =
(p − 1)2

4
k2
3u

−p−1
0

(

u2
1 − E (0)

)

(1.2.4)

From the condition that u0 > 0 and the definition of E (0) it follows

that

0 < Ẽ (t) =
(p − 1)2

2 (p + 1)
k2
3u

2 (t)−
p+3
2 u (t)p+3 =

(p − 1)2

2 (p + 1)
k2
3,

thus

u (t)p+1 > 0, ∀t ≥ 0.(1.2.5)

By identity (0.5) in Lemma 1 we find that

u (t)u′ (t) = u0u1 + E (0) t +
p + 3

p + 1

∫ t

0
u (r)p+1 dr, ∀t ≥ 0(1.2.6)

and so

u (t) u′ (t) ≥ u0u1 + E (0) t, ∀t ≥ 0.(1.2.7)

Thus, for the case u0u1 ≥ 0, using the same arguments as in the proof
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of Theorem 4 we get the conclusions (1.2.1) in Theorem 5.

Now let us show u0u1 ≥ 0. For u0u1 < 0, from (1.2.7) it follows that

u (t) u′ (t) ≥ 0 for large t. Suppose that t̄0 is the first number such that

u (t) u′ (t) = 0. Using identity (0.5) in Lemma 1 we get

(1.2.6.1) u (t)u′ (t) = E (0) (t − t̄0) +
p + 3

p + 1

∫ t

t̄0
u (r)p+1 dr ≥ 0, ∀t ≥ t̄0.

Hence we find that























uu′ (t) < 0 for t ∈ (0, t̄0) ,

uu′ (t̄0) = 0,

uu′ (t) > 0 for t > t̄0,

(1.2.8)

and u (t̄0) > 0; if not, then u (t̄0) = 0, this is in contradiction with (1.2.5) .

Hence we get

u′ (t̄0) = 0.(1.2.9)

Therefore, by (1.2.5) we obtain that

(p + 1) E (0) = −2u (t̄0)
p+1 < 0.(1.2.10)

The identity (1.2.10) and the condition E (0) > 0 are in contradiction;

therefore we get the assertion that u1 ≥ 0.

ii) By u0 = 0 and (1.2.6) we find

u (t) u′ (t) = E (0) t +
p + 3

p + 1

∫ t

0
u (r)p+1 dr, ∀t ≥ 0.(1.2.11)

We claim that uu′ (t) > 0 for every t > 0. If not, then according to the

positiveness of u1 there exists t̃ > 0 such that u
(

t̃
)

u′
(

t̃
)

= 0. Let T̃ be the

first non-zero so that u
(

T̃
)

u′

(

T̃
)

= 0, then u (t) > 0 in
(

0, T̃
)

. By (1.2.6)
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again we get

0 = uu′

(

T̃
)

= E (0) T̃ +
p + 3

p + 1

∫ T̃

0
u (r)p+1 dr.

This is therefore in contradiction with E (0) > 0; hence u (t) u′ (t) >

0 ∀t > 0 and J ′ (t) < 0 ∀t > 0. Using (0.6) in Lemma 1 for each ť > 0 we

conclude that

J ′ (t) = −
√

J ′
(

ť
)2− (p−1)2

4
E (0)

(

J
(

ť
)

2p+2
p−1 −J (t)

2p+2
p−1

)

, ∀t ≥ ť

(1.2.12)

and simultaneously

lim
ť→0

J ′
(

ť
)2 − (p − 1)2

4
u2

1J
(

ť
)

2p+2
p−1 =

(p − 1)2

2 (p + 1)
,

thus by (1.2.12) , the estimate (1.2.2) follows.

I.3. Some properties concerning T ∗

1
(u0, u1, p). In principle,

T ∗

1 (u0, u1, p) depends on three variables u0, u1 and p. Set ck,p :=
(p+1)u2

1

2up+1
0

,

then

T ∗

1 (u0, u1, p) =

√
2p + 2

p − 1
u
−

p−1
2

0 (1 − ck,p)
−

p−1
2p+2

∫ (1−ck,p)
p−1
2p+2

0

dr
√

1 − r
2p+2
p−1

.

It is evident that

lim
p→∞

T ∗

1 (u0, u1, p) = 0, lim
p→∞

T ∗

1 (u0, u1, p) = ∞.

For convenience, we consider the case u1 = 0,

T ∗

1 (u0, 0, p) =

√
π√

2p + 2
u
−

p−1
2

0

Γ
(

p−1
2p+2

)

Γ
(

p
p+1

) .
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Using Maple we get the graphs of T ∗

1 (u0, 0, p) below:

Figure 1. Graph of T ∗

1 (u0, 0, p), u0 ∈ (0, 1), p ∈ [1, 5].

Figure 2. Graph of T ∗

1 (u0, 0, p), u0 ∈ [1, 50], p ∈ [1, 50].
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Figure 3. Graphs of T ∗

1 (u0, 0, p), u0 ≤ 1.

Figure 4. Graph of T ∗

1 (u0, 0, p), u0 > 1.

The above pictures show the properties of T ∗

1 (u0, 0, p):

(1) there exists a constant u∗

0 such that T ∗

1 (u0, 0, p) is monotone decreasing
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in p for u0 ∈ [u∗

0, 1);

(2) there is a p0 such that T ∗

1 (u0, 0, p) is decreasing in (1, p0) and increasing

in (p0,∞) provided u0 ∈ [0, u∗

0);

(3) T ∗

1 (u0, 0, p) is differentiable in its variables and

(4) for u0 > 1 the life-span T ∗

1 (u0, 0, p) is decreasing in p.

We now show the validity of statements (3) and (4) using the mono-

tonicity of T ∗

1 (1, 0, p) for u0 6= 0. To prove (1) and (2) we must establish the

existence of u∗

0 with ∂
∂pT ∗

1 (u0, 0, p) ≤ 0 for 1 > u0 ≥ u∗

0, that is,

0 ≤ p − 1

p + 1
(p + 3)

∫ 1

0

(

1 − r
2 p+1

p−1

)

−1/2

dr

+4

∫ 1

0

(

1 − r
2 p+1

p−1

)

−3/2

r
2 p+1

p−1 ln r dr

+ (p − 1)2 (ln u0)

∫ 1

0

(

1 − r
2 p+1

p−1

)

−1/2

dr,

thus the existence of u∗

0 can be obtained provided

p − 1

p + 1
(p + 3)

(

r
2 p+1

p−1 − 1

)

− 4 ln r > 0, ∀r > 1.

After some calculations it is easy to get the above assertion.

To grasp the property of the life-span T ∗

1 (u0, u1, p) is very difficult, but

for fixed initial data we want to know how the life-span varies with p, so

now we consider the life-span T ∗

1 (0.6, 0.2, p) and list the following tables as

below.

p T ∗

1 (0.6, 0.2, p)

1.001 2001. 5

1.004 501. 42

1.008 251. 42

1.012 168. 08

p T ∗

1 (0.6, 0.2, p)

2 3. 4135

2.5 2. 7698

3 2. 4659

3.6497 2. 2644
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After some computations we get

T ∗

1 (u0, u1, p)

=

√
2p + 2

p − 1

(

up+1
0 − p + 1

2
u2

1

)

−
p−1
2p+2

∫ (1− p+1
2

u−p−1
0 u2

1)
p−1
2p+2

0

dr
√

1 − r
2p+2
p−1

.

By the experience in studying the life span T ∗

1 (u0, 0, p) , we consider the

properties of the life-span T ∗

1 (u0, u1, p) with u0u1 ≥ 0 in three cases:

Case 1: 0 < up+1
0 − (p + 1) u2

1/2 < 1. In this situation we find that

(i) for fixed u1,

(5) there exists a constant u∗

0 depending on u1 such that T ∗

1 (u0, u1, p) is

monotone decreasing in p for u0 ≥ u∗

0,

(6) there is a p0 so that T ∗

1 (u0, u1, p) decreases in (1, p0) and increases in

(p0,∞) provided u0 ∈ [0, u∗

0);

(ii) for fixed u0, the life-span T ∗

1 (u0, u1, p) decreases in u2
1.

Case2: up+1
0 −(p+1)u2

1/2 > 1. The life-span T ∗

1 (u0, u1, p) decreases in p.

Case 3: up+1
0 − (p + 1) u2

1/2 = 1. On the surface

{

(u0, u1, p) ∈ R
3
∣

∣

∣u
p+1
0 − (p + 1) u2

1/2 = 1, p > 1
}

we find that

T ∗

1 (u0, u1, p) = T ∗

1 (u0, p) =

√
2p + 2

p − 1

∫ u
−(p−1)/2
0

0

1
√

1 − r2(p+1)/(p−1)
dr

and T ∗

1 (u0, p) is monotone decreasing in u0 and in p.

II. Blow-up rate and blow-up constant. In this section we study

the blow-up rate and blow-up constant for u2,
(

u2
)

′

and
(

u2
)

′′

under the

conditions in section 1. We have the following results.
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Theorem 5: If u is the positive solution of the problem (0.1) with one

of the following properties that

(i) E (0) < 0

or

(ii) E (0) = 0, u0u1 > 0

or

(iii) E (0) > 0, u0 > 0

or

(iv) E (0) > 0, u0 = 0, u1 > 0

Then the blow-up rate of u is 2/ (p − 1) , and the blow-up constant of u is

p−1
√

2 (p − 1)−2 (p + 1), that is, for m ∈ {1, 2, 3, 4, 5, 6}

lim
t→T ∗

m (u0,u1,p)
(T ∗

m (u0, u1, p)−t)
2

p−1 u (t) = 2
1

p−1 (p + 1)
1

p−1 (p−1)−
2

p−1 .(2.1.1)

The blow-up rate of u′ is (p + 1) / (p − 1), and the blow-up constant of

u′is 2
p

p−1 (p + 1)
1

p−1 (p − 1)
−

p+1
p−1 , that is, for m ∈ {1, 2, 3, 4, 5, 6} .

lim
t→T ∗

m(u0,u1,p)
u′ (t) (T ∗

m (u0, u1, p) − t)
p+1
p−1

(2.1.2)
= 2

p
p−1 (p + 1)

1
p−1 (p − 1)−

p+1
p−1 .

The blow-up rate of u′′ is 2p/ (p − 1), and the blow-up constant of u′′is

2
p

p−1 (p + 1)
p

p−1 (p − 1)
−

2p
p−1 , that is, for m ∈ {1, 2, 3, 4, 5, 6}

lim
t→T ∗

m(u0,u1,p)
u′′ (t) (T ∗

m (u0, u1, p)−t)
2p
p−1

(2.1.3)
= 2

p
p−1 (p + 1)

p
p−1 (p−1)

−
2p

p−1 .

Proof. i) Under this condition, E (0) < 0, u0u1 ≥ 0 by (1.1.1) and
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(1.1.6) we get

∫ J(t)

0

1

T ∗

1 (u0, u1, p) − t

dr
√

k1 + E (0) rk2

=
p − 1

2
, ∀t ≥ 0.(2.1.4)

By Lemma 4 and (2.1.4) we obtain

limt→T ∗

1 (u0,u1,p)
1√
k1

J (t)

T ∗

1 (u0, u1, p) − t
=

p − 1

2
.(2.1.5)

This identity (2.1.5) is equivalent to (2.1.1) for m = 1.

For E (0) < 0, u0u1 < 0 using (1.1.9) we have also

∫ J(t)

0

dr
√

k1+E (0) rk2

=
p−1

2
(T ∗

2 (u0, u1, p)−t) , ∀t≥ t0(u0, u1, p).(2.1.6)

From the Lemma 4 and (2.1.6) , the estimate (2.1.1) for m = 2 follows.

Utilizing the identities (1.1.5) and (1.1.8) we find

lim
t→T ∗

m(u0,u1,p)
J ′ (t) = − p − 1√

2p + 2
, m = 1, 2.(2.1.7)

Therefore, by (2.1.7) we have for m = 1, 2

lim
t→T ∗

m(u0,u1,p)

(

u2
)

′

(t) (T ∗

m (u0, u1, p) − t)
p+3
p−1

(2.1.8)

= 2
2p

p−1 (p + 1)
2

p−1 (p − 1)−
p+3
p−1 ,

and thus, for m = 1, 2

lim
t→T ∗

m(u0,u1,p)
u′ (t)2 (T ∗

m (u0, u1, p) − t)
2p+2
p−1

(2.1.9)

= 2
2p

p−1 (p + 1)
2

p−1 (p − 1)
−

2p+2
p−1 .
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Through (0.5) and (2.1.9) for m = 1, 2, we obtain the estimate

lim
t→T ∗

m(u0,u1,p)

(

u2
)

′′

(t) (T ∗

m (u0, u1, p) − t)
2p+2
p−1

= (p + 3) lim
t→T ∗

m

u′ (t)2 (T ∗

m (u0, u1, p) − t)
2p+2
p−1 ,

(2.1.10)
lim

t→T ∗

m(u0,u1,p)
2u (t)u′′ (t) (T ∗

m (u0, u1, p) − t)
2p+2
p−1

= (p + 1) lim
t→T ∗

m

u′ (t)2 (T ∗

m (u0, u1, p) − t)
2p+2
p−1

= 2
2p

p−1 (p + 1)
p+1
p−1 (p − 1)

−
2p+2
p−1

and

lim
t→T ∗

m(u0,u1,p)
u′′ (t) (T ∗

m (u0, u1, p) − t)
2p

p−1 = 2
p

p−1 (p + 1)
p

p−1 (p − 1)−
2p

p−1

Thus the estimate (2.1.3) for m = 1, 2 is proved.

ii) For E (0) = 0, u0u1 > 0, for m = 3, using identity (1.1.11) we get

u2 (t) = u
2 p+3

p−1

0 (
p − 1

2
u0u1)

−
4

p−1 (T ∗

m(u0, u1, p) − t)
−

4
p−1 , ∀t ≥ 0.(2.1.11)

Therefore the estimates (2.1.1) , (2.1.2) and (2.1.3) for m = 3 follow from

(2.1.11).

iii) The estimates (2.1.1) , (2.1.2) and (2.1.3) for m = 4, 5 are similar to

the above arguments (i) in the proof of this Theorem.

Now we consider the property of the blow-up constants K1,K2 and K3.

We have

K1 (p) = 2
1

p−1 (p + 1)
1

p−1 (p − 1)−
2

p−1 ,

K2 (p) = 2
p

p−1 (p + 1)
1

p−1 (p − 1)−
p+1
p−1 ,

K3 (p) = 2
p

p−1 (p + 1)
p

p−1 (p − 1)
−

2p
p−1 .
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Figure 5. Graph of K1 (p), K2 (p), K3 (p)

Figure 6. Graph of K1 (p), K2 (p), K3 (p)

We see that the graphs, Ki (p), i = 1, 2, 3 are all decreasing in p ∈ (1, p1) ;

and Ki (p) tends to zero for i = 2, 3 and K1 (p) tends to 1, as p tends to

infinity. The monotonicity of these functions can be obtained after showing

the following inequalities:

d

dp
K1(p) = (2p + 2)

1
p−1 (p − 1)

−
2

p−1
−2

(

ln
(p−1)2

2p + 2
− p + 3

p + 1

)

≤ 0, p ∈ (1, p1)

where p1 ∼ 9.2203,
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Figure 7. Graph of d
dpK1 (p).
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Figure 8. Graph of ln (p−1)2

2p+2 − p+3
p+1 .

p + ln (2p + 2) +
2

p + 1
≥ 2 ln (p − 1) , ∀p > 1.

The above inequality is easy to prove, we omit the arguments.

III. Uniqueness on p and extension. In practical the characteristic

index p (t) depends on the characteristic (at time t) of the calligrapher him-
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self only, in other words, when two “Werke” are similar to each other, then

the correspondent characteristic p (t) must very close, in mathematics, the

fact can be easily solved to the scalar constant p (t) = p, we write it below.

Theorem 6. Suppose that u and v are the positive solutions of the

following equations respectively

u′′ (t) = u (t)p , v′′ (t) = v (t)q(3.1)

with u (t) 6= 0 6= v (t) for each t ≥ 0. If they have the same rate of displace-

ment, that is,

u′ (t) /u (t) = v′ (t) /v (t) ,(3.2)

then they posses the same characteristic, this means, p = q.

Proof. According to the condition (3.2), we have

u (t)p+1 − u′ (t)2

u (t)2
=

v (t)q+1 − v′ (t)2

v (t)2
.

Using (3.2) again, then

u (t)p−1 = v (t)q−1 .

This together with (3.2) we obtain the assertion.

For E (0) = 0, u0u1 < 0, it is easy to see that

u (t) = u
p+3
p−1

0

(

u2
0 −

p − 1

2
u0u1t

)

−
2

p−1

, ∀t ∈ (0, T ) .

Hence we find the limit limt→∞ u (t) = 0 and

lim
t→∞

t
2

p−1 u (t) = u
p+3
p−1

0

(

p − 1

−2
u0u1

)

−
2

p−1

.
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The following Theorem is a direct application of Theorem 4, Theorem

6 and we omit the proof.

Theorem 7. If u ∈ PC2(R+), that is, u∈C2(
⋃

∞

i=0(Ti, Ti+1)∪ (T∞,∞))

where T0 = 0, Ti+1 ≥ Ti and T∞ = limi→∞ Ti, is a piecewise solution of

the problem of (0.1) with E (t) < 0 for the continuous points of E. Then

for T∞ = ∞, the discontinuous points of u can be got at the blow-up points

T̄ ∗

m (u0, u1, p) ,m ∈ N of u2 (t) and T̄ ∗

m (u0, u1, p) are given by

T̄ ∗

1 (u0, u1, p)

:=



























2T ∗

1 (u0, u1, p) if u0u1 ≥ 0 and uu′(T ∗+
1 (u0, u1, p))≥0,

(T ∗

1 + T ∗

2 )(u0, u1, p) if u0u1 <0 and uu′(T ∗+
1 (u0, u1, p))≥0,

2T ∗

2 (u0, u1, p) if u0u1 <0 and uu′(T ∗+
1 (u0, u1, p))≥0

(3.3)

and

T̄ ∗

m+1 (u0, u1, p)

:=











(

T̄ ∗

m + T ∗

1

)

(u0, u1, p) if uu′
(

T̄ ∗+
m (u0, u1, p)

)

≥ 0,

(

T̄ ∗

m + T ∗

2

)

(u0, u1, p) if uu′
(

T̄ ∗+
m (u0, u1, p)

)

< 0,
(3.4)

where uu′
(

T̄ ∗+
m (u0, u1, p)

)

:= limt→T ∗+
m+7

u2(t)−u(T̄ ∗

m(u0,u1,p))
2

t−T̄ ∗

m(u0,u1,p)
.

Further we have the blow-up rate at T̄ ∗

m (u0, u1, p) of u2 is 4/ (p − 1) , and

the blow-up constant of u2 is
p−1
√

4 (p − 1)−4 (p + 1)2, that is, for m ∈ N

limt→T ∗

m

(

T̄ ∗

m (u0, u1, p) − t
)

4
p−1 u2 (t) = 2

2
p−1 (p + 1)

2
p−1 (p − 1)

−
4

p−1 .(3.5)

The blow-up rate of
(

u2
)

′

at T̄ ∗

m (u0, u1, p) is (p + 3) / (p − 1), and the blow-

up constant of
(

u2
)

′

is 2
2p

p−1 (p + 1)
2

p−1 (p − 1)−
p+3
p−1 , that is, for m ∈ N
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lim
t→T ∗

m(u0,u1,p)

(

T̄ ∗

m (u0, u1, p) − t
)

p+3
p−1

(

u2
)

′

(t)

(3.6)

= 2
2p

p−1 (p + 1)
2

p−1 (p − 1)
−

p+3
p−1 .

The blow-up rate of
(

u2
)

′′

at T̄ ∗

m (u0, u1, p) is (2p + 2) / (p − 1), and the blow-

up constant of
(

u2
)

′′

is 2
2p

p−1 (p + 1)
8

p−1 (p − 1)
−

2p+8
p−1 (p + 3), that is, for m ∈

N

lim
t→T ∗

m(u0,u1,p)

(

u2
)

′′

(t) (T ∗

m (u0, u1, p) − t)
2p+2
p−1

(3.7)

=

(

2

p − 1

)
2p

p−1

(p + 3)

(

p + 1

p − 1

) 2
p−1

.

Part B. Positive solution for p < 1. Before the study of the prop-

erties of solutions for the differential equation (0.1) we collect some results

on the situation that Eu (0) = 0.

(1) For u0 > 0 and u1 > 0, we have

u (t) =

(

u
1−p
2

0 +
1 − p

2

√

2

p + 1
t

)

2
1−p

and

t
2

p−1 u (t) →
(

1 − p

2

√

2

p + 1

)

2
1−p

as t → ∞.

(2) For u0 > 0 and u1 < 0, the solutions of (0.1) can be given as

uc (t) =



































(

u
1−p
2

0 + 1−p
2

√

2
p+1t

) 2
1−p

t ∈ [0, T0]

0 t ∈ [T0, T0 + c]

(

(1−p)2

2p+2

)

1
1−p

(t − T0 − c)
2

1−p t ≥ T0 + c
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where c is any positive real number and T0 =
√

p+1
2 u1−p

0 , and also

t
2

p−1 u (t) →
(

1 − p

2

√

2

p + 1

)

2
1−p

as t → ∞.

IV. Eu (0) > 0. In this section we discuss the case Eu (0) > 0 and we

have the following result concerning the zero point and asymptotic behavior

at infinity of the solutions for the equation (0.1) :

Theorem 8. Suppose that T ∗ is the life-span of u which is a positive

solution of problem (0.1) with Eu (0) > 0 and u0 > 0. Then for

(1) u1 < 0, there exists a constant Z0 so that T ∗ ≤ Z0 and limt→Z0 u (t) =

0, limt→Z0 u′ (t) = −
√

Eu (0) and limt→Z0 u′′′ (t)−1 = 0. Moreover,

Z0 =

∫ u0

0

dr
√

Eu (0) + 2
p+1rp+1

,(4.1)

lim
t→Z −

0

u′′′ (t) (t − Z0)
1−p = pEu (0)

p
2 ;(4.2)

(2) u1 > 0,

lim
t→∞

u (t) t−
2

1−p =

(

1 − p

2

√

2

p + 1

)

2
1−p

.(4.3)

Proof. (1) For u1 < 0, after some calculations we obtain

u′ (t) = −
√

Eu (0) +
2

p + 1
u (t)p+1

≤ −
√

2

p + 1
u (t)p+1, ∀t ∈ [0, T ∗)(4.4)

and

u (t) ≤
(

u
1−p
2

0 − 1 − p

2
t

) 2
1−p

, ∀t ∈ [0, T ∗) ;
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thus there exists a constant Z0 so that T ∗ ≤ Z0 and limt→Z0 u (t) = 0.

By (4.4) we conclude that limt→Z −

0
u′ (t) = −

√

Eu (0) and

t =

∫ u0

u(t)

dr
√

Eu (0) + 2
p+1rp+1

, ∀t ∈ [0, T ∗) ,

Z0 = lim
t→Z0

∫ u0

u(t)

dr
√

Eu (0) + 2
p+1rp+1

=

∫ u0

0

dr
√

Eu (0) + 2
p+1rp+1

and

lim
t→Z −

0

u′′′ (t) (t − Z0)
1−p = p lim

t→Z −

0

(

u (t)

t − Z0

)p−1

u′ (t) = pEu (0)
p
2 .

Therefore (4.1) and (4.2) are proved.

(2) For u1 > 0 we have

u′ (t) =

√

Eu (0) +
2

p + 1
u (t)p+1 ≥

√

2

p + 1
u (t)p+1, ∀t ≥ 0,

u (t)
1−p
2 ≥ u

1−p
2

0 +
1 − p

2

√

2

p + 1
t, ∀t ≥ 0.(4.5)

On the other hand,

u′ (t) ≤
√

2

p + 1

(

u (t) +

(

p + 1

2
Eu (0)

) 1
p+1

)

p+1
2

, ∀t ≥ 0,

(

u (t) +

(

p + 1

2
Eu (0)

) 1
p+1

)

1−p
2

(4.6)

≤
(

u0 +

(

p + 1

2
Eu (0)

) 1
p+1

)

1−p
2

+
1 − p

2

√

2

p + 1
t ∀t ≥ 0.

From (4.5) and (4.6), the estimate (4.3) follows.



2004] THE DIFFERENTIAL EQUATION u
′′
− u

p = 0 171

V. Eu (0) < 0. In this section we discuss the case Eu (0) < 0. Similar

to the above arguments proving Theorem 8 we have the following result on

critical point and asymptotic behavior at infinity of the solutions for the

equation (0.1) :

Theorem 9. Suppose that u is a positive solution of problem (0.1) with

Eu (0) < 0 and u0 > 0. Then

lim
t→∞

u (t) t
−

2
1−p =

(

1 − p

2

√

2

p + 1

)

2
1−p

.(5.1)

Moreover, for u1 < 0, there exists a constant Z1 so that limt→Z1 u′ (t) = 0

and

Z1 =
p+1

√

p + 1

2
(−Eu (0))

1−p
2p+2

∫ ( p+1
−2

Eu(0))
−1
p+1 u0

1

dr√
rp+1 − 1

.(5.2)

Remark. We do not know whether the solutions under the circum-

stance in Theorem 9 is analytic or not.

Through Theorems 3 through 7 may be summarized for p > 1, in the

following tables

E (0) E (0) < 0 E (0) = 0

T
(i) u0u1 ≥ 0, T ≤ T ∗

1 (u0, u1, p)

(ii) u0u1 < 0, T ≤ T ∗

2 (u0, u1, p)

(i) u0u1 > 0, T ≤ T ∗

3

(ii) u0u1 < 0, T = ∞
(iii) u0u1 = 0, T = ∞, u ≡ 0.

R1,K1
4

p − 1
,K1 (p)

4

p − 1
,K1 (p)

R2,K2
p + 3

p − 1
,K2 (p)

p + 3

p − 1
,K2 (p)

R3,K3
2p + 2

p − 1
,K3 (p)

2p + 2

p − 1
,K3 (p)
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E (0) > 0 Ê (0) > 0 Ê (0) = 0, u1 > 0

T T ≤ T ∗

4 (u0, u1, p) T ≤ T ∗

5 (u0, u1, p)

R1,K1
4

p − 1
,K1 (p)

4

p − 1
,K1 (p)

R2,K2
p + 3

p − 1
,K2 (p)

p + 3

p − 1
,K2 (p)

R3,K3
2p + 2

p − 1
,K3 (p)

2p + 2

p − 1
,K3 (p)

Where T := Life− span of u, E (0) = Energy, R1 = blow − up rate of

a, K1 = blow − up constant of a; R2 = blow − up rate of a′, K2 = blow − up

constant of a′; R3 = blow − up rate of a′′, K3 = blow − up constant of a′′;

Ê (0) := u2
0u

2
1 − 4u2

0E (0) .
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