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ON THE SEMI-LINEAR WAVE EQUATIONS (I)
Meng-Rong Li

Abstract. In this work we consider the triviality of the solutions of the
initial-boundary value problems for some semi-linear wave equations.

INTRODUCTION

In this paper we work with the triviality of the solutions of the initial-boundary

value problems for the semi-linear wave equation

(sL) Ou+ f(u)=0 in[0,7)xQ, u=0on [0,T] x 0N,
u(0,) = ug € HY (), u(0,:) =u, € L*(Q),

where 0 < T < oo and 2 C R" is a bounded domain on which the divergent
theorem is applicable and (L*(Q), ||-|l2), (Hg(2), ||-|l1.2) are the usual spaces
of Lebesgue and Sobolev. Further, we employ the following abridgements:

=0/t V = (8/)0x1,-,0/dx,), Du:= (1, Vu), O:=0%/t* — A,

|Dul* : =4 + |Vul?, Au(t) := || Dull3(t) =/ | Du (t,x)[*da,
Q

a,(t) ::/Qu(t,:r)2d:c, F(s):= /OS f(r)dr,

E.(1) ::/Q (|Du(t, 2)? + 2F (u(t, x))) dz.
For a Banach space X and 0 < T < oo, we set
C*(0,T, X) : =space of C*-functions [0,T) — X,
H1:=C%0,T,H; (2)) N C*(0,T, L*()),
H2:=CY0,T, H}(2)) N C?(0, T, L*(2)).
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Jorgens [2] proved the existence for global solutions of IBVP (SL) for Q2 =
R? and a non-linearity of the form f(u) = ug(u?). Jorgens' result permits
the treatment for example for the wave equation Ou + u* = 0. Browder [1]
generalized Jorgens’ result to 2 = R". Von Wahl and Heinz [10] extended
Browder’s result. Li [7] proved the non-existence of global solutions of IBVP
(SL) under the assumptions E(0) < 0, a’(0) > 0 and

nf(n) —2(1 4 2a) F (n) < 2aC3n* Vn €R.

The result of Li [7] allows treatment of IBVP (SL) for f(u) = u?, p €
[1,n/n — 2]. In this case Li [6] showed the uniqueness of the solutions. For
further contributions to the theme “blow-up”, see John [3] and Racke [8]. In
[7] we have an interesting result which says that the solutions of IBVP (SL)
must be the trivial function if up =0 = u; = f(0) and

nf(n) +2F(n) > —kn|*  ¥n €R.

The proof is based on the following Lemma 1.

1. FUNDAMENTAL LEMMAS

Lemma 1. Suppose that b: Rt — R is a C*-function with b(0) = 0 =
b'(0) and there exist two constants k1, ko such that

(1) b () + kib (t) + kab(t) < 0.
Then b= 0.

Proof of Lemma 1. We prove this lemma under two instances: k; = 0 and
ki # 0.
1) For k; = 0 and ky > 0, by the positivity of b and the inequality (1) we
find
b (t) <0 Vvt >0

and

(2) b(t)<b(0)=0  Vt>0.

Integrating the inequality (2) from 0 to ¢t we obtain the inequality b(¢) < 0.
Herewith it follows automatically the assertion of Lemma 1 for the case k; = 0
and k,; > 0. We show next the case k; = 0 and &k, < 0.

We set ko := —r2. Then, by the inequality (1) we get

(3) b (t)—r*b(t) <0  Vt>0.
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Multiplying inequality (3) with exp (rt), we then arrive at the following
estimate

% (e 0'(&) —rert - b()) = e (b"()) = b)) <O V>0,

and so
et b (t) —re™ - b(t) < b (0) —rb(0) =0  Vt>0.

This means however b () — rb(t) < 0. From the Gronwall inequality it follows
at once the assertion of Lemma 1 for the case k; = 0.
2) Suppose now k; # 0. Through the transformation

B(t) := e - b(t), k:=k/2,
the inequality (1) is transformed into
B(t) = (K — ko) B(t) = € (b"(t) + 2kb' () + kob(t)) <0 ¥ > 0.
From the first step it follows the statement of Lemma 1. [

We need the arguments below about the differentiability of a and A. The
following Lemma 2 is important for us. We show Lemma 2 through the ele-
mentary knowledge about the integral calculus in Sobolev space.

Lemma 2. Suppose that w € H1. Then a, is continuously differentiable,
a,, and A, are weakly differentiable in (0,T) if @ is absolutely continuous.
Further we have

’

(4) o () =2 /Q u(t,z)ilt,x)de Vi € (0,T),

where 1 means the first partial derivative in time t of u in the sense of L*(Q).
If u € H2 then a, € C?(0,T) and A, € C*(0,T). Furthermore we get

"

5)  dl(t) =2 /Q (a(t,2)? + u(t, 2)ii(t, 2)) de in L2(Q) Vi€ (0,T)

and

’

(6) A (t) =2 /Q (Va(t, z) - Vult, z) +a(t, 2)i(t, z))de in L2(Q) Vt € (0,T).

Proof. We shall show the uniqueness of the solutions of the initial-boundary
value problem for the semi-linear wave equation (SL). We can write a and A
instead of a, and A, for convenience. Then we show first the differentiability
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of a and the continuity of @ for u € H1. Secondly, we show the absolute
continuity of @’ for u € H1. Then it follows automatically that a € C?(0,T)
for v in H2. Thirdly, we show the absolute continuity of A for w in H1.
Then A is differentiable automatically for v in H2. At the end we show the
continuity of A" for u € H2.

1) Continuous differentiability of a in (0,T") for w in H1.

From the definition of a(t) we get

a(t+h) — a(t) /Q (u(t + h, z)? — u(t,x)2) du

limh_,o = ’llll)r(l) h
[ e+ how) + gt @) (u(t + o) - ult,2)do
= hmh &

h
-+ B — u®)]s
h

< 2([Ju(t + )2 + [u®)]]2)

By the differentiability of u in L?() it follows the existence of the above limit.
Using the definition of u, we get

(e £ )~ u(b)]
h—0 h,

This means that the identity (7) is valid in L*(£2), that is,

(7)

= u(t) |in L*(Q2) sense.

. Nut+h) —u®)l]s .
lim . = [la(®)ll2
and (4 h) — u(t)
. uw(t + —u(t .
}lllir(l) S —— u(t) - 0.

By the definition of a(t) we have therefore

limsup,_,, W —2/Qu(t,:):)u(t,:r)dx
(8) u x) —u(t,x
= limsup,_, / ( ek, ]?L G )(U(t+h, x) +u(t,x)) ) dzl .
@ —2u(t, x)u(t, z)

We divide the identity (8) into two parts and obtain
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alt+h) —alt) _, /Q ult, 2)i(t, x)de

i /Q ((u(t + hxli —u(t,z) u(t,x)> (u(t+ ) + u(tw))dx)
— limsupy,__,

+ /Q w(t, z)(u(t + h,z) — u(t,z))dz.

lim supy,_,

(9)
From (9) it follows the following estimate

w _Q/QU(t,x)u(t,x)dx

/Q ((u(t—l—h,x})L—u(t,ﬂ?) —u(t,x)> (ult + by 2) +u(t7x))) i

/ At ) (u(t + b, 2) — u(t, 2))do
Q

u(t+h) —u(t) .
W

lim sup,,_,

< limsup,_,

(10)

+lim sup,,_,q

2
+limsupy, g [[@(t)ll2[[u(t + ) = u(t)]]2 = 0.

Now we show the continuity of a’. By using the estimate (10), we obtain
d(t+h) —d () =2 /Q (ult + hy2)ilt + h, ) — ult, 2)ilt, z))dz
(11) :2/Qu(t+h,a:)(u(t+h, z) — ilt, z))de
42 /Q alt, x) (ult + hyx) — ult, ))d.

By the Holder inequality and (11), we reach at the estimate

ja'(t+h) —a'(t)]

12
( < 2fju(t + h)ll2l[a(t + h) = w(t)ll2 + 2[[a(t)[2]lu + h) — u(t)]]2-

From the continuity of u and % and the boundedness of u(t 4+ h) and «(t)
in L?(Q) follows the continuity of a". Hence a is continuously differentiable in
(0, T). By the same argument we can prove the existence of the limit of a at
t=0.

2) We prove now the absolute continuity of a'(¢) in (0,T) for those u in
H1 for which u is absolutely continuous.
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From the absolute continuity of @ and the inequality (12) it follows at once
the absolute continuity of . With the help of the famous theorem for absolute
continuity in reflexive Banach spaces, one sees the weak differentiability of o’
n (0,7). Further we get

a (t + h]i —a (t) _ 2/9 (u(t, 1:)2 + u(t, x)’d(t, x)) dx

lim sup,,_.,

(13) u(t + h,x)u(t + h,z) — u(t, z)u(t, x)

= limsup,_,, 2 / h
Q
—a(t, z)* — u(t, z)i(t, x)

dz|.

We divide the equation (13) into three parts and obtain

a t"‘h) ( ) -9 ('(t’ g;)2+u(t,33)il(t»x)) dx

Q

h
/Q (u (t+h,x fU(t z) —alt, x)) w(t + h,z)dw

= limsup,,_,2 / ( —ute) ii(t, l‘)) u(t, x)dz

limsup,,_,,

(14)

+/@U+hw)—ﬂt@ﬁ@wﬂm
Q
By (14) we obtain the following estimate

a(t+hh)—a(t) _ 2/Q (a(t, 2)® + u(t, 2)i(t, x)) dz

lim sup,,_,,

u(t+h)—u(t) .
AL

+ lim supy, g [[a(t)[2[|a(t + h) = a(t)]2

< limsup,_, [|u(t + h)||2

2

alt+h) —a(t)
O

+limy, o [Ju(t)]]2

Now we prove the continuity of " . Through the same arguments we have
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got the following estimate

eem -0 0=2 [ [( i mit o i )|

(15) =2 /Q[u(t + hyx)(u(t + h,x) — a(t,x)) + a(t, ) (Wt + h, ) — u(t, z))]dx

49 /Q (Gii(t + h, @) — it 2))ult + by 2) + (u(t + b, @) — ult,2))i(t, 2)]dz.

From the Hélder inequality it follows the boundedness of |a” (t+h) —a” (t)]
with the bound

2[[a(t + h)llaflat + h) = a(@)lls + 2[a(®)llolla( + k) = (@)

+2[[ult + h)lall@(t + h) — i@(t)|l2 + 2[|@@)[|2)ult + h) — u(?)]l2.

Because of the continuity of w,% and i and the boundedness of u(t +
h), u(t), u(t + h) and @(t) in L*(Q), by (15) it follows the continuity of a”.
Hence @ is continuously differentiable in (0, T) for u in H2.

3) Analogously, if u € H2, then A € C'(0,T). Further, by the definition
of A we have

A(t+ h) — A(t) / (u(t +h,x)? —a(t,r)? n |Vu(t + h,x)|> — |Vu(t,m)|2) dx
Q

h h h
and
‘A(tJrh})LA(t) -2 /Q[Vu(t,z) -Vu(t,x) + u(t, x)i(t, x)]dx
u(t+hx)7u(tac) . (q )+ alt. 2V da
. L(( t,0)) - 0+ hoa) + () |

+/Q ( i Hfﬁz x)(—tzf()t) ;))W(t’x) )df”

(R )
@ u(t + h,x) + u(t, z))dz.
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From (16) it follows the estimate

A(t+h) — A(t)
R
W —i(t)| (lidt +mlle + [(®)]2)

Hla@l2llalt +h) = a@)lz + [Va@) [V (u(t + k) = u(@))]

[y (R -,

Hence the assertions about A in Lemma 2 follow. ]

_9 /Q [Va(t,z) - Vu(t,z) + a(t, 2)ii(t, ©)]dz

(u(t +h) +u(t))[]2-

Definition 3. u € H1 is a weak solution of the problem (SL) if

[ [(Futs,)- Fito,) — s, 2)5(5,2) + Fluls,2))p(s, )
/( (0,2)p(0,z) — u(t,z)p(t,x))de Vo € HI.

Q

Remark 3. This definition is resulted through the multiplication with ¢
and integration from 0 to t. From this we obtain the following Lemma 4.

Lemma 4. Suppose that f : R— R is a continuously differentiable func-
tion with the property that vf(v) and F(v) are both in L'(Q) for each v in
H}(Q); fv) € WHH0,T, L*(Q)) for each v in H2; f(u): H2 — H1 is local

Lipschitz, i.e., there exists a function M (||u| g2, [|v||r2) such that
A7) fw) = f@)ll < M(ullmz [vlla) v — vllg2 Vu,v € H2,

where M (||ul| g2, ||v||z2) is bounded if ||ul| g2 and ||v|| g2 are all bounded. Sup-
pose uy € H*(Q)NHy () and uy € Hy(Y). Then the problem (SL) has exactly
one solution v € H1 and a € C'(0,T), a (t) is differentiable almost everywhere
n (0,7T) and

t) = 2/Q (u(t,z)? — |Vu(t,z)|* — u(t,z) f(u(t,z))) dz a.e. in (0,T),

(19) A(t) = =2 /Q alt,2)f(u(t, )z ae. in (0,T).

In order to facilitate the flow of the argument, we will postpone its proof
to the end of the paper. We have the following main results.
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2. MAIN RESULTS

The initial-boundary value problem for the damping wave equation
Ou+g(u) =0

has a solution in H1, provided g : R — R* is in C" such that ¢ (t) > 0 V¢t > 0
(see [9] p. 29). The triviality of the solutions of wave equation of this type will
be discussed later in another work. Using the method here one can consider
also the wave equation
Ou+ f(u,a) =0
with the constraint
or
F0,€)? <k (Inl” +€)v(n,6) € R?*,2 <p < 2n/n -2,
We have the following main results.
Theorem 5. The initial-boundary value problem [IBVP] for the wave

equation (SL) has exactly one global solution u = 0 in H2 provided uy = 0 = u,
and

(20) f?<k@m*+n*) VneR, pel2,2n/(n-2)

Theorem 6. Suppose that u € H1 is a weak solution of the IBVP for
the semi-linear wave equation (SL). Then we have u = 0 and f(0) = 0 if
ug = 0 = uy and there exists a positive constant k such that

(21) F(n) > —kn* VYneR.

Theorem 7.  Suppose that Q := B,,(0) — B,,(0), 7o > r; > 0, is an
annulus in R™ and there exists two positive constants k > 0 and p > 1 such
that

(22) nf(n) +2F(n) > —kn|” ¥vneR.

Then the IBVP for (SL) has exactly one global radial solution u =0 in H2 if
f s local Lipschitz and
uy =0 =wu; = f(0).

Remark 7. We here require no upper-bound on p. f(u) = —mu + ku? is
a typical example for this condition.
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3. PROOF OF THEOREM 5

It is evident that u = 0 is a solution of the IBVP for the semi-linear wave
equation (SL). Suppose that 0 # u € H2 is another solution of (SL). Since the
continuity of A and ug = 0 = uy, it follows that A(0) = 0 and the following
supremum exists

(23) t1:=sup{t >0: A(t) <1}.
By (20) and Lemma 4 we find the inequality

(24) A(t) < At) + & (A(t) + / P (t, x)d:r:) |
Q
For 2 < p < 2n/(n — 2) we have the Sobolev inequality
(25) lullf(t) < kil Dull3(t) = ki A(t) %
Through (23) (24) and (25) we arrive at
(26) A(t) <A+ E)AR) + k- k At)E <k A(t) for tin [0,1]

since A(t) <1Vt € [0,t,], where ky := 1+ k + 27 pkk;.
Multiply the inequality (26) with exp(—kst). Then it brings to

(27)  (exp(—kat) - A(t)) = exp(—kqt)(A'(t) — ko A(t)) <0Vt € [0,t,].
By (27) we have found
A(t) < A(0) - exp(kot) =0 Yt € [0,t4].

Hence we get w = 0 in [0,¢;]. Repeating the above process, we reach at
u =0 in R*. This contradicts u # 0. [ ]

Corollary 5. Theorem 5 is true particularly for the well-defined functions
fu) = uP/? - u?? uP? —u1? p g e [2,2n/n — 2]

or under the assumption

f)? <D kilnl” n eR,
=1

where k; = positive constants, p; € [2,2n/n — 2].

Application of Theorem 5. For a local Lipschitz function f there exists
exactly one solution u € H1 of the IBVP for the wave equation (SL), provided
up € H}(Q) and uy € L*(Q).
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The existence and uniqueness of solutions are well known but our proof
for uniqueness is short. We now show it below. Suppose that v and v are two
solutions of (SL). Then

O(u —v) + f(u) = f(v) =0, (u—0)(0,") =0=(a—20)(0,).
We set
g(u—v) = f(u) — f(v).
Then we have
lg(u=v)[[2(t) = [If(u) = fF)[2(t) < M(Jlulli2, [v]i2)[lw = v[i2(2)
M (Jlulliz, [vll12) [D(w = v)]2().

IN

Like the proof in Theorem 5 we get || D(u—v)||2(t) = 0 and the uniqueness
of the solutions of this problem (SL) follows. [

4. PROOF OF THEOREM 6
We choose

u(s+e,-) —u(s,-)
€

we(s,) = € H1

in Definition 3 and let ¢ — 0. Then we can get the estimate
A(t) = —2 / Flu(t, z))dz < 2ka(t).
Q

With the help of Poincaré inequality it follows

(28) C3 /

Qu(t,a:)2da:+/ﬂu(t,:c)2d:c g/Q(Wu(t,a:)|2+a(t,a:)2) dr = A(f).

By (28) we have therefore

Coad (t) = QCQ/Qu(t,x)u(t,x)da: < C3alt) +/§2u(t,x)2d$
< A(t) < 2ka(t) Vt>0.
So it brings to

(29) a (t) —2kCqla(t) <0 ¥Vt >0.
Multiplying the inequality (29) with exp(—rt), r := 2kCg", we obtain

’

(e7a(t)) = e "(a (t) —ra(t)) <O Vt>0,

339



340 Meng-Rong Li

herewith
(30) a(t) < a(0)exp(rt) =0 YVt >0
since up = 0 = uy. By (30) it follows immediately that « = 0 and f(0) =0. m

Corollary 6. Theorem 6 is valid particularly for monotonic increasing
function f with f(0) = 0. For instance, f(u) = u?*~', —1 + expu.

5. PROOF OF THEOREM 7

It is clear that v = 0 is a radial solution of IBVP for the wave equation

(SL).

1) Suppose that 0 # u(t, |z|) = u(t,r), r = |z|, is another radial solution
in H2 of (SL). We set

ov(t,
u(t,r) = v(t,r)r=/2 o (t,r) = ol T).
or
Then we have
or z
. t :.. t (17?7,)/2 ; — — 71
i) =t P, 1= 2= 2
dult, , 1—n 1
wi(t,r) := ult,7) =v.(t,r) r = o+ nr T 2g(t,r)

and

1 - 3 1—n 1—n
+3 %y <— * an_“x? + 7‘2_2) :

From this it follows

1—n 1—n 1—n
Au=v,,772 + v, (an_l - TL’I”T_?’TQ)

]. - 3 1—n 1—n
+ 5 i (— ;an*‘LrQ + nr22>

1-n (n—l)(n—3) 1-n
SUnTE T
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We set

(n—1)(n—3)
4r2

Gv) = /Ov g(s)ds, g(v) = v+ f (ranlv) .

Then the equation (SL) will be transformed into the following equation
v —0%/0r* +g(v) =0 in[0,T) x (r,72),
(RG) / (v) [0,T) x (r1,72)
v(0,7) = upr" V2 =0=9(0,7),v(t,r) =0 =v(t,r).
Choose n = r1=™/2y in (22), then we get

W)+ 2E() = rDRgf (pem0/2y) 2P (-2
> _kr—(n—l)p/2yv|p_

(31)

From (31) it follows therefore

vg(v) +2G(v) = (n=Dn=3) 14)70(;1 — 3)1)2 T+ uf (r_%v)
—i——(n - 14)75271 — 3)1)2 + 2T /Ou f (r’nTﬂs) ds
(32) = (n=Dn=3 12);;1 ) v+ T of (rf%v) T N e /Or‘ngl“ f(s)ds
= —(n — 12);; — 3)112 T (vf (7"_”2;11)) + 27T F (r‘nT_lv))
> sz — k= (=DE2=D P > k) (v 4 |o]P),

- 2r2
with & := max {-2"'(n —1)(n — 3)r 2 + kr(=m®/2=1) : g ¢ [py r]}.
2) Because v € H2 is a solution of (RG), we have found that
/” (0(t, s)v(t, s) — v(t, s)v.(t,8) + 0(t, s)g(v(t, s)))ds =0,

/ ) (0(t, 8)i(t, s) + 0o (t, $)vn(t, 8) + 0(t, s)g(v(t, s)))ds

= U(t7 r2)vr(t) TZ) - ’U(tv rl)vr(t7 Tl) = 07

(33) % / Y0t 5)2 + 0, (t, )2 + 2G(0(t, ) ds = 0.
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By (33) we therefore reach the following identity
/2('( 8)* + vr(t,9)* + 2G(v(t, 9))) ds
(34) - / )2 4 0.0, 5)° + 2G(0(0, 5))) ds

—2/ G(v(0,s))

by v(0,7) = 0 = ©(0,r). Multiplying the equation (RG) with v and integrating
from 7, to ry, we get

%% /:2 'Uz(t, S)dS = /:2 (’D(tv 3)2 - Ur(t7 3>2 - ’U(tv S)Q(U(t7 3>)) dS,

a’(t)
2

(35) 2 / C ot 5)2ds = 2 / P ot $)g(u(t, 5)) + 2G(u(t, 5)))ds,

dv(t,r)
or

where a(t) := / v(t,r)?dr and v, 1=
By (32) and (353 we obtain

N

(36) 2/ V2ds < — a4 2(75) + ky /:2 (v(t, s)* + |v(t, s)|?) ds.

By the Sobolev embedding H; (ry,79) C CJ(r1,72) C LP(ry,r3), there exists a
positive constant ky such that

(37) / lo(t, 5)|Pds < ky < / (0t 5)2 + v, (¢, 5)?) ds) :

By the inequalities (36) and (37) we have found that

T P t 792 T9
2/ v, (t,8)%ds < —(12()4-]{1/ v(t, s)?ds+kiks (/ (v(t, 8)* +v,(t,5)°) ds)
and

t) +4/ v, (t, s)*ds

(38) , " 5
< le/ U(t, S)QdS + 2k ks </ (U(t,s)2 + UT(t7 3)2) dS)

This yields the estimate
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(39) & () + 4/: vty 8)2ds < 2krat) + ks (a@ﬁ + (/ v (t, s)2d3>g> :

where k3 = nglkg

3) By using v(0,7) = 0 = 0(0,r), we get v,.(0,7) = 0 = 0,(0,7), a(0) =0
and the following supremum exists for p > 2

(40) Ly = sup {t: / onlt, s)2ds <k, a(t) <1, t < t} ,

k4 := min {1, (4/k3)2/(p_2)} .
Through the definition (40), in [0, 5] we find that

T2 % T2 T2 g_l
ks </ v, (t, 5)2d3> = ]{73/ v, (t, s)*ds (/ vr(t,s)st)
< ks/ v,(t, 8)%ds I~::4g71
(41) 1 AN 7 -1
< ks - [()p ] / v,(t,8)%ds
k3 71
< 4/ v, (t, 5)%ds.
From the inequalities (38), (39) and (41) we obtain
" P k
0" (1) < 2kyalt) + ksa(t)} < <2k1 + 1’23) a(t) Ve [0,h),

since a(t) < 1in [0,%,). By a(0) = 0 = &'(0) and Lemma 1 it follows

Note that t, must be oo, for otherwise it will produce a contradiction to the
definition of 5. For p € [1,2], from Lemma 1 and the inequality (39) it follows
that a(t) = 0. So w = 0. This is however a contradiction to the assumption
u # 0. ]
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6. PROOF OoF LEMMA 4

We show the existence and uniqueness of the solutions of the IBVP (SL)
through an elementary method.

By [5, p. 95; 4, p. 31], we suppose that v; € H2 is the existing solution of
the IBVP for the wave equation

Ov; + f(uwg) = 0in [0,T) x Q,vi(t,z) =0 on [0,T] x 01,
Ul(o, ) = Ug € HZ(Q) N H&(Q),’Ul(o, ) =1Uu € H&(Q)

Then we have v, (t) € H*(Q2) for each t € [0,7] and we get also
: d .
B0 = 5 [ (a(t.2) + [Tt ) + 200(t2)f (wo(a))) da

= 2/9[751@,3:)(@1(@:[:) + fluo(x))) + Yoy (t, ) - Viy (t, z)]dx = 0.

Using Lemma 2 we have therefore the identity

%a;jl(t) _ /ﬂ(i}l(t,x)2—i—vl(t,x)i}l(t,a:))da:

_ /Q(i)l(t,a:)z — Vit 2)[2 — w1 (t, ) fuo(x))) da.

Suppose that v, := Sv,, € H2 is the existing solution of the IBVP for
the wave equation

OUmg1 + f(vm) =010 [0,T) X Q, vy,41(t, ) =0 on [0,T] x 08,

Um+1(0, ) = Ug € H2(Q) N Hé(Q),’Um_._l(O, ) =u € H&(Q)
Then we have found that v,,1(t) € H*(Q) for each ¢ € [0,T] and

’

d
Evm+1(t) = at /Q (®m+1(t7x)2 + |va+1(t,x)|2
+20m 41 (1, 2) f (0 (8, 2)) ) d = 0.

By Lemma 2 once more we obtain therefore the identity

1 " .
ia”m+1 (t) - /Q(Um+1 (t’ m)Q - ‘vvarl (t7 l’) ’2

~Um i1 (6, 2) f (0 (t,2)) ) da
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After some long computations one can verify the following statements.

(1) vy, is uniformly bounded in H1 and in H2.

(2) vy, is a Cauchy sequence in H1 and in H2.

Hence we reach at the assertions of Lemma 4. ]
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