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ON THE SEMI-LINEAR WAVE EQUATIONS (I)

Meng-Rong Li

Abstract. In this work we consider the triviality of the solutions of the
initial-boundary value problems for some semi-linear wave equations.

Introduction

In this paper we work with the triviality of the solutions of the initial-boundary
value problems for the semi-linear wave equation{

2 u+ f(u) = 0 in [0, T )× Ω, u = 0 on [0, T ]× ∂Ω ,

u(0, ·) = u0 ∈ H1
0 (Ω), u̇(0, ·) = u1 ∈ L2(Ω),

(SL)

where 0 < T ≤ ∞ and Ω ⊂ Rn is a bounded domain on which the divergent
theorem is applicable and (L2(Ω), ‖ · ‖2), (H1

0 (Ω), ‖ · ‖1,2) are the usual spaces
of Lebesgue and Sobolev. Further, we employ the following abridgements:

· := ∂/∂t, ∇ := (∂/∂x1, · · · , ∂/∂xn), Du := (u̇,∇u), 2 := ∂2/∂t2 −4,

|Du|2 := u̇2 + |∇u|2, Au(t) := ‖Du‖22(t) =
∫

Ω
|Du (t, x)|2dx,

au(t) :=
∫

Ω
u(t, x)2dx, F (s) :=

∫ s

0
f(r)dr,

Eu(t) :=
∫

Ω

(
|Du(t, x)|2 + 2F (u(t, x))

)
dx.

For a Banach space X and 0 < T ≤ ∞, we set

Ck(0, T,X) :=space of Ck-functions [0, T )→ X,

H1 :=C0(0, T,H1
0 (Ω)) ∩ C1(0, T, L2(Ω)),

H2 :=C1(0, T,H1
0 (Ω)) ∩ C2(0, T, L2(Ω)).
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Jörgens [2] proved the existence for global solutions of IBVP (SL) for Ω =
R3 and a non-linearity of the form f(u) = ug(u2). Jörgens′ result permits
the treatment for example for the wave equation 2u + u3 = 0. Browder [1]
generalized Jörgens′ result to Ω = Rn. Von Wahl and Heinz [10] extended
Browder′s result. Li [7] proved the non-existence of global solutions of IBVP
(SL) under the assumptions E(0) < 0, a′(0) > 0 and

ηf(η)− 2(1 + 2α)F (η) ≤ 2αC2
Ωη

2 ∀η ∈ R.

The result of Li [7] allows treatment of IBVP (SL) for f(u) = up, p ∈
[1, n/n − 2]. In this case Li [6] showed the uniqueness of the solutions. For
further contributions to the theme “blow-up”, see John [3] and Racke [8]. In
[7] we have an interesting result which says that the solutions of IBVP (SL)
must be the trivial function if u0 ≡ 0 ≡ u1 ≡ f(0) and

ηf(η) + 2F (η) ≥ −k|η|p ∀η ∈ R.

The proof is based on the following Lemma 1.

1. Fundamental Lemmas

Lemma 1. Suppose that b : R+ → R+ is a C2-function with b(0) = 0 =
b′(0) and there exist two constants k1, k2 such that

b
′′
(t) + k1b

′
(t) + k2b(t) ≤ 0.(1)

Then b ≡ 0.

Proof of Lemma 1. We prove this lemma under two instances: k1 = 0 and
k1 6= 0.

1) For k1 = 0 and k2 ≥ 0, by the positivity of b and the inequality (1) we
find

b
′′
(t) ≤ 0 ∀t ≥ 0

and

b
′
(t) ≤ b

′
(0) = 0 ∀t ≥ 0.(2)

Integrating the inequality (2) from 0 to t we obtain the inequality b(t) ≤ 0.
Herewith it follows automatically the assertion of Lemma 1 for the case k1 = 0
and k2 ≥ 0. We show next the case k1 = 0 and k2 ≤ 0.

We set k2 := −r2. Then, by the inequality (1) we get

b
′′
(t)− r2b(t) ≤ 0 ∀t ≥ 0.(3)
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Multiplying inequality (3) with exp (rt), we then arrive at the following
estimate

d

dt

(
ert · b

′
(t)− rert · b(t)

)
= ert ·

(
b
′′
(t)− r2b(t)

)
≤ 0 ∀t ≥ 0,

and so
ert · b

′
(t)− rert · b(t) ≤ b

′
(0)− rb(0) = 0 ∀t ≥ 0.

This means however b
′
(t)− rb(t) ≤ 0. From the Gronwall inequality it follows

at once the assertion of Lemma 1 for the case k1 = 0.
2) Suppose now k1 6= 0. Through the transformation

B(t) := ekt · b(t), k := k1/2,

the inequality (1) is transformed into

B
′′
(t)−

(
k2 − k2

)
B(t) = ekt

(
b
′′
(t) + 2kb

′
(t) + k2b(t)

)
≤ 0 ∀t ≥ 0.

From the first step it follows the statement of Lemma 1.

We need the arguments below about the differentiability of a and A. The
following Lemma 2 is important for us. We show Lemma 2 through the ele-
mentary knowledge about the integral calculus in Sobolev space.

Lemma 2. Suppose that u ∈ H1. Then au is continuously differentiable,
a
′

u and Au are weakly differentiable in (0, T ) if u̇ is absolutely continuous.
Further we have

a
′

u(t) = 2
∫

Ω
u(t, x)u̇(t, x)dx ∀t ∈ (0, T ),(4)

where u̇ means the first partial derivative in time t of u in the sense of L2(Ω).
If u ∈ H2 then au ∈ C2(0, T ) and Au ∈ C1(0, T ). Furthermore we get

a
′′

u(t) = 2
∫

Ω

(
u̇(t, x)2 + u(t, x)ü(t, x)

)
dx in L2(Ω) ∀t ∈ (0, T )(5)

and

A
′

u(t) = 2
∫

Ω
(∇u̇(t, x) ·∇u(t, x) + u̇(t, x)ü(t, x))dx in L2(Ω) ∀t ∈ (0, T ).(6)

Proof. We shall show the uniqueness of the solutions of the initial-boundary
value problem for the semi-linear wave equation (SL). We can write a and A
instead of au and Au for convenience. Then we show first the differentiability
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of a and the continuity of a
′

for u ∈ H1. Secondly, we show the absolute
continuity of a

′
for u ∈ H1. Then it follows automatically that a ∈ C2(0, T )

for u in H2. Thirdly, we show the absolute continuity of A for u in H1.
Then A is differentiable automatically for u in H2. At the end we show the
continuity of A

′
for u ∈ H2.

1) Continuous differentiability of a in (0, T ) for u in H1.

From the definition of a(t) we get

limh→0
a(t+ h)− a(t)

h
= lim

h→0

∫
Ω

(
u(t+ h, x)2 − u(t, x)2) dx

h

= limh

∫
Ω

(u(t+ h, x) + u(t, x))(u(t+ h, x)− u(t, x))dx

h

≤ 2(‖u(t+ h)‖2 + ‖u(t)‖2) · ‖u(t+ h)− u(t)‖2
h

.

By the differentiability of u in L2(Ω) it follows the existence of the above limit.
Using the definition of u̇, we get

lim
h→0

‖u(t+ h)− u(t)‖2
h

= u̇(t) |in L2(Ω) sense.(7)

This means that the identity (7) is valid in L2(Ω), that is,

lim
h→0

‖u(t+ h)− u(t)‖2
h

= ‖u̇(t)‖2

and

lim
h→0

∥∥∥∥u(t+ h)− u(t)
h

− u̇(t)
∥∥∥∥

2
= 0.

By the definition of a(t) we have therefore

lim suph→0

∣∣∣∣a(t+ h)− a(t)
h

− 2
∫

Ω
u(t, x)u̇(t, x)dx

∣∣∣∣
= lim suph→0

∣∣∣∣∣∣
∫

Ω

 u(t+ h, x)− u(t, x)
h

(u(t+ h, x) + u(t, x))

−2u(t, x)u̇(t, x)

 dx
∣∣∣∣∣∣ .

(8)

We divide the identity (8) into two parts and obtain
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lim suph→0

∣∣∣∣a(t+ h)− a(t)
h

− 2
∫

Ω
u(t, x)u̇(t, x)dx

∣∣∣∣
= lim suph→0

∣∣∣∣∣∣∣∣
∫

Ω

((
u(t+ h, x)− u(t, x)

h
− u̇(t, x)

)
· (u(t+ h, x) + u(t, x))dx

)
+
∫

Ω
u̇(t, x)(u(t+ h, x)− u(t, x))dx.

∣∣∣∣∣∣∣∣ .
(9)

From (9) it follows the following estimate

lim suph→0

∣∣∣∣a(t+ h)− a(t)
h

− 2
∫

Ω
u(t, x)u̇(t, x)dx

∣∣∣∣
≤ lim suph→0

∣∣∣∣∫
Ω

((
u(t+ h, x)− u(t, x)

h
− u̇(t, x)

)
· (u(t+ h, x) + u(t, x))

)
dx

∣∣∣∣
+ lim suph→0

∣∣∣∣∫
Ω
u̇(t, x)(u(t+ h, x)− u(t, x))dx

∣∣∣∣
≤ lim suph→0 ‖u(t+ h) + u(t)‖2 ·

∥∥∥∥u(t+ h)− u(t)
h

− u̇(t)
∥∥∥∥

2

+ lim suph→0 ‖u̇(t)‖2‖u(t+ h)− u(t)‖2 = 0.

(10)

Now we show the continuity of a
′
. By using the estimate (10), we obtain

a
′
(t+ h)− a′(t)=2

∫
Ω

(u(t+ h, x)u̇(t+ h, x)− u(t, x)u̇(t, x))dx

=2
∫

Ω
u(t+ h, x)(u̇(t+ h, x)− u̇(t, x))dx

+2
∫

Ω
u̇(t, x)(u(t+ h, x)− u(t, x))dx.

(11)

By the Hölder inequality and (11), we reach at the estimate

|a′(t+ h)− a′(t)|

≤ 2‖u(t+ h)‖2‖u̇(t+ h)− u̇(t)‖2 + 2‖u̇(t)‖2‖u(t+ h)− u(t)‖2.
(12)

From the continuity of u and u̇ and the boundedness of u(t+ h) and u̇(t)
in L2(Ω) follows the continuity of a

′
. Hence a is continuously differentiable in

(0, T ). By the same argument we can prove the existence of the limit of a
′

at
t = 0.

2) We prove now the absolute continuity of a
′
(t) in (0, T ) for those u in

H1 for which u̇ is absolutely continuous.
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From the absolute continuity of u̇ and the inequality (12) it follows at once
the absolute continuity of a

′
. With the help of the famous theorem for absolute

continuity in reflexive Banach spaces, one sees the weak differentiability of a
′

in (0, T ). Further we get

lim suph→0

∣∣∣∣∣a
′
(t+ h)− a′(t)

h
− 2

∫
Ω

(
u̇(t, x)2 + u(t, x)ü(t, x)

)
dx

∣∣∣∣∣
= lim suph→0 2

∣∣∣∣∣∣∣∣
∫

Ω


u(t+ h, x)u̇(t+ h, x)− u(t, x)u̇(t, x)

h

−u̇(t, x)2 − u(t, x)ü(t, x)

 dx
∣∣∣∣∣∣∣∣ .

(13)

We divide the equation (13) into three parts and obtain

lim suph→0

∣∣∣∣∣a
′
(t+ h)− a′(t)

h
− 2

∫
Ω

(
u̇(t, x)2 + u(t, x)ü(t, x)

)
dx

∣∣∣∣∣

= lim suph→0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

(
u(t+ h, x)− u(t, x)

h
− u̇(t, x)

)
u̇(t+ h, x)dx

+
∫

Ω

(
u̇(t+ h, x)− u̇(t, x)

h
− ü(t, x)

)
u(t, x)dx

+
∫

Ω
(u̇(t+ h, x)− u̇(t, x))u̇(t, x)dx.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(14)

By (14) we obtain the following estimate

lim suph→0

∣∣∣∣a(t+ h)− a(t)
h

− 2
∫

Ω

(
u̇(t, x)2 + u(t, x)ü(t, x)

)
dx

∣∣∣∣
≤ lim suph→0 ‖u̇(t+ h)‖2

∥∥∥∥u(t+ h)− u(t)
h

− u̇(t)
∥∥∥∥

2

+ lim suph→0 ‖u̇(t)‖2‖u̇(t+ h)− u̇(t)‖2

+ limh→0 ‖u(t)‖2
∥∥∥∥ u̇(t+ h)− u̇(t)

h
− ü(t)

∥∥∥∥
2
.

Now we prove the continuity of a
′′
. Through the same arguments we have
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got the following estimate

a
′′
(t+ h)− a′′(t) = 2

∫
Ω

[(
u̇(t+ h, x)2 − u̇(t, x)2

+u(t+ h, x)ü(t+ h, x)− u(t, x)ü(t, x)

)]
dx

= 2
∫

Ω
[u̇(t+ h, x)(u̇(t+ h, x)− u̇(t, x)) + u̇(t, x)(u̇(t+ h, x)− u̇(t, x))]dx

+2
∫

Ω
[(ü(t+ h, x)− ü(t, x))u(t+ h, x) + (u(t+ h, x)− u(t, x))ü(t, x)]dx.

(15)

From the Hölder inequality it follows the boundedness of |a′′(t+h)−a′′(t)|
with the bound

2‖u̇(t+ h)‖2‖u̇(t+ h)− u̇(t)‖2 + 2‖u̇(t)‖2‖u̇(t+ h)− u̇(t)‖2

+2‖u(t+ h)‖2‖ü(t+ h)− ü(t)‖2 + 2‖ü(t)‖2‖u(t+ h)− u(t)‖2.

Because of the continuity of u, u̇ and ü and the boundedness of u̇(t +
h), u̇(t), u(t + h) and ü(t) in L2(Ω), by (15) it follows the continuity of a

′′
.

Hence a
′

is continuously differentiable in (0, T ) for u in H2.

3) Analogously, if u ∈ H2, then A ∈ C1(0, T ). Further, by the definition
of A we have

A(t+ h)−A(t)
h

=
∫

Ω

(
u̇(t+ h, x)2 − u̇(t, x)2

h
+
|∇u(t+ h, x)|2 − |∇u(t, x)|2

h

)
dx

and

∣∣∣∣A(t+ h)−A(t)
h

− 2
∫

Ω
[∇u̇(t, x) · ∇u(t, x) + u̇(t, x)ü(t, x)]dx

∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ω

((
u̇(t+ h, x)− u̇(t, x)

h
− ü(t, x)

)
· (u̇(t+ h, x) + u̇(t, x))dx

)
+
∫

Ω

(
ü(t, x)(u̇(t+ h, x)− u̇(t, x)) +∇u̇(t, x)

·∇(u(t+ h, x)− u(t, x))

)
dx

+
∫

Ω

 ∇(u(t+ h, x)− u(t, x)
h

− u̇(t, x)
)

·∇(u(t+ h, x) + u(t, x))dx.



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(16)
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From (16) it follows the estimate∣∣∣∣A(t+ h)−A(t)
h

− 2
∫

Ω
[∇u̇(t, x) · ∇u(t, x) + u̇(t, x)ü(t, x)]dx

∣∣∣∣
≤
∥∥∥∥ u̇(t+ h)− u̇(t)

h
− ü(t)

∥∥∥∥
2

(‖u̇(t+ h)‖2 + ‖u̇(t)‖2)

+‖ü(t)‖2‖u̇(t+ h)− u̇(t)‖2 + |∇u̇(t)‖2‖∇(u(t+ h)− u(t))‖2

+
∥∥∥∥∇(u(t+ h)− u(t)

h
− u̇(t)

)∥∥∥∥
2
‖∇(u(t+ h) + u(t))‖2.

Hence the assertions about A in Lemma 2 follow.

Definition 3. u ∈ H1 is a weak solution of the problem (SL) if∫ t

0

∫
Ω

(∇u(s, x) · ∇ϕ(s, x)− u̇(s, x)ϕ̇(s, x) + f(u(s, x))ϕ(s, x))dxds

=
∫

Ω
(u̇(0, x)ϕ(0, x)− u̇(t, x)ϕ(t, x))dx ∀ϕ ∈ H1.

Remark 3. This definition is resulted through the multiplication with ϕ
and integration from 0 to t. From this we obtain the following Lemma 4.

Lemma 4. Suppose that f : R→ R is a continuously differentiable func-
tion with the property that vf(v) and F (v) are both in L1(Ω) for each v in
H1

0 (Ω); f(v) ∈ W 1,1(0, T, L2(Ω)) for each v in H2; f(u) : H2 → H1 is local
Lipschitz, i.e., there exists a function M(‖u‖H2, ‖v‖H2) such that

‖f(u)− f(v)‖H1 ≤M(‖u‖H2, ‖v‖H2)‖u− v‖H2 ∀u, v ∈ H2,(17)

where M(‖u‖H2, ‖v‖H2) is bounded if ‖u‖H2 and ‖v‖H2 are all bounded. Sup-
pose u0 ∈ H2(Ω)∩H1

0 (Ω) and u1 ∈ H1
0 (Ω). Then the problem (SL) has exactly

one solution u ∈ H1 and a ∈ C1(0, T ), a
′
(t) is differentiable almost everywhere

in (0, T ) and

a
′′
(t) = 2

∫
Ω

(
u̇(t, x)2 − |∇u(t, x)|2 − u(t, x)f(u(t, x))

)
dx a.e. in (0, T ),(18)

A
′
(t) = −2

∫
Ω
u̇(t, x)f(u(t, x))dx a.e. in (0, T ).(19)

In order to facilitate the flow of the argument, we will postpone its proof
to the end of the paper. We have the following main results.
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2. Main Results

The initial-boundary value problem for the damping wave equation

2u+ g(u̇) = 0

has a solution in H1, provided g : R → R+ is in C1 such that g
′
(t) ≥ 0 ∀t ≥ 0

(see [9] p. 29). The triviality of the solutions of wave equation of this type will
be discussed later in another work. Using the method here one can consider
also the wave equation

2u+ f(u, u̇) = 0

with the constraint
ξ · f(η, ξ) ≥ 0

or
f(η, ξ)2 ≤ k

(
|η|p + ξ2)∀(η, ξ) ∈ R2, 2 ≤ p ≤ 2n/n− 2.

We have the following main results.

Theorem 5. The initial-boundary value problem [IBVP] for the wave
equation (SL) has exactly one global solution u ≡ 0 in H2 provided u0 ≡ 0 ≡ u1

and

f(η)2 ≤ k
(
η2 + |η|p

)
∀η ∈ R, p ∈ [2, 2n/(n− 2)].(20)

Theorem 6. Suppose that u ∈ H1 is a weak solution of the IBVP for
the semi-linear wave equation (SL). Then we have u ≡ 0 and f(0) = 0 if
u0 ≡ 0 ≡ u1 and there exists a positive constant k such that

F (η) ≥ −kη2 ∀ η ∈ R.(21)

Theorem 7. Suppose that Ω := Br2(0) − Br1(0), r2 > r1 > 0, is an
annulus in Rn and there exists two positive constants k > 0 and p > 1 such
that

ηf(η) + 2F (η) ≥ −k|η|p ∀η ∈ R.(22)

Then the IBVP for (SL) has exactly one global radial solution u ≡ 0 in H2 if
f is local Lipschitz and

u0 ≡ 0 ≡ u1 ≡ f(0).

Remark 7. We here require no upper-bound on p. f(u) = −mu+ kuq is
a typical example for this condition.
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3. Proof of Theorem 5

It is evident that u ≡ 0 is a solution of the IBVP for the semi-linear wave
equation (SL). Suppose that 0 6= u ∈ H2 is another solution of (SL). Since the
continuity of A and u0 = 0 = u1, it follows that A(0) = 0 and the following
supremum exists

t1 := sup{t ≥ 0 : A(t) ≤ 1}.(23)

By (20) and Lemma 4 we find the inequality

A
′
(t) ≤ A(t) + k

(
A(t) +

∫
Ω
|u|p(t, x)dx

)
.(24)

For 2 ≤ p ≤ 2n/(n− 2) we have the Sobolev inequality

‖u‖pp(t) ≤ k1‖Du‖p2(t) = k1A(t)
p
2 .(25)

Through (23) (24) and (25) we arrive at

A
′
(t) ≤ (1 + k)A(t) + k · k1A(t)

p
2 ≤ k2A(t) for t in [0, t1](26)

since A(t) ≤ 1 ∀t ∈ [0, t1], where k2 := 1 + k + 2−1pkk1.
Multiply the inequality (26) with exp(−k2t). Then it brings to

(exp(−k2t) ·A(t))
′

= exp(−k2t)(A
′
(t)− k2A(t)) ≤ 0 ∀t ∈ [0, t1].(27)

By (27) we have found

A(t) ≤ A(0) · exp(k2t) = 0 ∀t ∈ [0, t1].

Hence we get u ≡ 0 in [0, t1]. Repeating the above process, we reach at
u ≡ 0 in R+. This contradicts u 6= 0.

Corollary 5. Theorem 5 is true particularly for the well-defined functions

f(u) = up/2 + uq/2, up/2 − uq/2, p, q ∈ [2, 2n/n− 2]

or under the assumption

f(η)2 ≤
m∑
i=1

ki|η|pi ∀η ∈ R,

where ki = positive constants, pi ∈ [2, 2n/n− 2].

Application of Theorem 5. For a local Lipschitz function f there exists
exactly one solution u ∈ H1 of the IBVP for the wave equation (SL), provided
u0 ∈ H1

0 (Ω) and u1 ∈ L2(Ω).
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The existence and uniqueness of solutions are well known but our proof
for uniqueness is short. We now show it below. Suppose that u and v are two
solutions of (SL). Then

2(u− v) + f(u)− f(v) = 0, (u− v)(0, ·) = 0 = (u̇− v̇)(0, ·).

We set
g(u− v) := f(u)− f(v).

Then we have

‖g(u− v)‖2(t) = ‖f(u)− f(v)‖2(t) ≤M(‖u‖1,2, ‖v‖1,2)‖u− v‖1,2(t)

≤ M (‖u‖1,2, ‖v‖1,2) ‖D(u− v)‖2(t).

Like the proof in Theorem 5 we get ‖D(u−v)‖2(t) ≡ 0 and the uniqueness
of the solutions of this problem (SL) follows.

4. Proof of Theorem 6

We choose
ϕε(s, ·) =

u(s+ ε, ·)− u(s, ·)
ε

∈ H1

in Definition 3 and let ε→ 0. Then we can get the estimate

A(t) = −2
∫

Ω
F (u(t, x))dx ≤ 2ka(t).

With the help of Poincaré inequality it follows

C2
Ω

∫
Ω
u(t, x)2dx+

∫
Ω
u̇(t, x)2dx ≤

∫
Ω

(
|∇u(t, x)|2 + u̇(t, x)2) dx := A(t).(28)

By (28) we have therefore

CΩa
′
(t) = 2CΩ

∫
Ω
u(t, x)u̇(t, x)dx ≤ C2

Ωa(t) +
∫

Ω
u̇(t, x)2dx

≤ A(t) ≤ 2ka(t) ∀t ≥ 0.

So it brings to

a
′
(t)− 2kC−1

Ω a(t) ≤ 0 ∀t ≥ 0.(29)

Multiplying the inequality (29) with exp(−rt), r := 2kC−1
Ω , we obtain(

e−rta(t)
)′

= e−rt(a
′
(t)− ra(t)) ≤ 0 ∀t ≥ 0,
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herewith

a(t) ≤ a(0) exp(rt) = 0 ∀t ≥ 0(30)

since u0 ≡ 0 ≡ u1. By (30) it follows immediately that u ≡ 0 and f(0) = 0.

Corollary 6. Theorem 6 is valid particularly for monotonic increasing
function f with f(0) = 0. For instance, f(u) = u2p−1, −1 + expu.

5. Proof of Theorem 7

It is clear that u ≡ 0 is a radial solution of IBVP for the wave equation
(SL).

1) Suppose that 0 6= u(t, |x|) = u(t, r), r = |x|, is another radial solution
in H2 of (SL). We set

u(t, r) = v(t, r)r(1−n)/2, vr(t, r) :=
∂v(t, r)
∂r

.

Then we have

ü(t, r)= v̈(t, r)r(1−n)/2, ri :=
∂r

∂xi
=
xi
r
,

ui(t, r) :=
∂u(t, r)
∂xi

= vr(t, r) r
1−n

2 −1xi +
1− n

2
r

1−n
2 −2xiv(t, r)

and

uii=vrrr
1−n

2 −2x2
i + vr

(
r

1−n
2 −1 − 1 + n

2
r

1−n
2 −3x2

i +
1− n

2
r

1−n
2 −3x2

i

)
+

1− n
2

v

(
−3 + n

2
r

1−n
2 −4x2

i + r
1−n

2 −2
)

=vrrr
1−n

2 −2x2
i + vr

(
r

1−n
2 −1 − nr 1−n

2 −3x2
i

)
+

1− n
2

v

(
−3 + n

2
r

1−n
2 −4x2

i + r
1−n

2 −2
)
.

From this it follows

4u=vrrr
1−n

2 + vr
(
nr

1−n
2 −1 − nr 1−n

2 −3r2
)

+
1− n

2
v

(
−3 + n

2
r

1−n
2 −4r2 + nr

1−n
2 −2

)
=vrrr

1−n
2 − (n− 1)(n− 3)

4r2
r

1−n
2 .
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We set

G(v) =
∫ v

0
g(s)ds, g(v) =

(n− 1)(n− 3)
4r2

v + r
n−1

2 f
(
r
n−1

2 v
)
.

Then the equation (SL) will be transformed into the following equation

(RG)
v̈ − ∂2v/∂r2 + g(v) = 0 in [0, T )× (r1, r2),

v(0, r) = u0r
(n−1)/2 ≡ 0 ≡ v̇(0, r), v(t, r1) ≡ 0 ≡ v(t, r2).

Choose η = r(1−n)/2v in (22), then we get

ηf(η) + 2F (η) = r−(n−1)/2vf
(
r−(n−1)/2v

)
+ 2F

(
r−(n−1)/2v

)
≥ −kr−(n−1)p/2|v|p.

(31)

From (31) it follows therefore

vg(v) + 2G(v) =
(n− 1)(n− 3)

4r2
v2 + r

n−1
2 vf

(
r−

n−1
2 v
)

+
(n− 1)(n− 3)

4r2
v2 + 2r

n−1
2

∫ v

0
f
(
r−

n−1
2 s
)
ds

=
(n− 1)(n− 3)

2r2
v2 + r

n−1
2 vf

(
r−

n−1
2 v
)

+ 2r
n−1

2 r
n−1

2

∫ r−
n−1

2 v

0
f(s)ds

=
(n− 1)(n− 3)

2r2
v2 + r

n−1
2

(
vf
(
r−

n−1
2 v
)

+ 2r
n−1

2 F
(
r−

n−1
2 v
))

≥ (n− 1)(n− 3)
2r2

v2 − kr−(n−1)(p/2−1)|v|p ≥ −k1(v2 + |v|p),

(32)

with k1 := max
{
−2−1(n− 1)(n− 3)r−2 + kr(1−n)(p/2−1) : r ∈ [r1, r2]

}
.

2) Because v ∈ H2 is a solution of (RG), we have found that∫ r2

r1

(v̇(t, s)v̈(t, s)− v̇(t, s)vrr(t, s) + v̇(t, s)g(v(t, s)))ds = 0,∫ r2

r1

(v̇(t, s)v̈(t, s) + v̇r(t, s)vr(t, s) + v̇(t, s)g(v(t, s)))ds

= v̇(t, r2)vr(t, r2)− v̇(t, r1)vr(t, r1) = 0,

d

dt

∫ r2

r1

(
v̇(t, s)2 + vr(t, s)2 + 2G(v(t, s))

)
ds = 0.(33)
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By (33) we therefore reach the following identity∫ r2

r1

(
v̇(t, s)2 + vr(t, s)2 + 2G(v(t, s))

)
ds

=
∫ r2

r1

(
v̇(0, s)2 + vr(0, s)2 + 2G(v(0, s))

)
ds

= 2
∫ r2

r1

G(v(0, s))ds = 0

(34)

by v(0, r) = 0 = v̇(0, r). Multiplying the equation (RG) with v and integrating
from r1 to r2, we get

1
2
d

dt

∫ r2

r1

v2(t, s)ds =
∫ r2

r1

(
v̇(t, s)2 − vr(t, s)2 − v(t, s)g(v(t, s))

)
ds,

2
∫ r2

r1

vr(t, s)2ds = − â
′′
(t)
2
−
∫ r2

r1

(v(t, s)g(v(t, s)) + 2G(v(t, s)))ds,(35)

where â(t) :=
∫ r2

r1

v(t, r)2dr and vr :=
∂v(t, r)
∂r

.

By (32) and (35) we obtain

2
∫ r2

r1

vr(t, s)2ds ≤ − â
′′
(t)
2

+ k1

∫ r2

r1

(
v(t, s)2 + |v(t, s)|p

)
ds.(36)

By the Sobolev embedding H1
0 (r1, r2) ⊂ C0

0 (r1, r2) ⊂ Lp(r1, r2), there exists a
positive constant k2 such that∫ r2

r1

|v(t, s)|pds ≤ k2

(∫ r2

r1

(
v(t, s)2 + vr(t, s)2) ds) p

2

.(37)

By the inequalities (36) and (37) we have found that

2
∫ r2

r1

vr(t, s)2ds ≤ − â
′′
(t)
2

+k1

∫ r2

r1

v(t, s)2ds+k1k2

(∫ r2

r1

(
v(t, s)2 + vr(t, s)2) ds) p

2

and

â
′′
(t) + 4

∫ r2

r1

vr(t, s)2ds

≤ 2k1

∫ r2

r1

v(t, s)2ds+ 2k1k2

(∫ r2

r1

(
v(t, s)2 + vr(t, s)2) ds) p

2

.

(38)

This yields the estimate
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â
′′
(t) + 4

∫ r2

r1

vr(t, s)2ds ≤ 2k1â(t) + k3

(
â(t)

p
2 +

(∫ r2

r1

vr(t, s)2ds

) p
2
)
,(39)

where k3 := 2
p
2 k1k2.

3) By using v(0, r) = 0 = v̇(0, r), we get vr(0, r) = 0 = v̇r(0, r), â(0) = 0
and the following supremum exists for p > 2

t2 := sup
{
t̄ :
∫ r2

r1

vr(t, s)2ds ≤ k4, â(t) ≤ 1, t ≤ t̄
}
,(40)

k4 := min
{

1, (4/k3)2/(p−2)
}
.

Through the definition (40), in [0, t2] we find that

k3

(∫ r2

r1

vr(t, s)2ds

) p
2

= k3

∫ r2

r1

vr(t, s)2ds

(∫ r2

r1

vr(t, s)2ds

) p
2−1

≤ k3

∫ r2

r1

vr(t, s)2ds · k
p
2−1
4

≤ k3 ·
[(

4
k3

) 2
p−2
] p

2−1

·
∫ r2

r1

vr(t, s)2ds

≤ 4
∫ r2

r1

vr(t, s)2ds.

(41)

From the inequalities (38), (39) and (41) we obtain

â
′′
(t) ≤ 2k1â(t) + k3â(t)

p
2 ≤

(
2k1 +

pk3

2

)
â(t) ∀t ∈ [0, t2),

since â(t) ≤ 1 in [0, t2]. By â(0) = 0 = â
′
(0) and Lemma 1 it follows

â(t) ≡ 0 ∀t ∈ [0, t2].

Note that t2 must be∞, for otherwise it will produce a contradiction to the
definition of t2. For p ∈ [1, 2], from Lemma 1 and the inequality (39) it follows
that â(t) ≡ 0. So u ≡ 0. This is however a contradiction to the assumption
u 6= 0.
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6. Proof of Lemma 4

We show the existence and uniqueness of the solutions of the IBVP (SL)
through an elementary method.

By [5, p. 95; 4, p. 31], we suppose that v1 ∈ H2 is the existing solution of
the IBVP for the wave equation

2v1 + f(u0) = 0 in [0, T )× Ω, v1(t, x) = 0 on [0, T ]× ∂Ω,

v1(0, ·) = u0 ∈ H2(Ω) ∩H1
0 (Ω), v̇1(0, ·) = u1 ∈ H1

0 (Ω).

Then we have v1(t) ∈ H2(Ω) for each t ∈ [0, T ] and we get also

E
′

v1
(t) =

d

dt

∫
Ω

(
v̇1(t, x)2 + |∇v1(t, x)|2 + 2v1(t, x)f(u0(x))

)
dx

= 2
∫

Ω
[v̇1(t, x)(v̇1(t, x) + f(u0(x))) +∇v1(t, x) · ∇v̇1(t, x)]dx = 0.

Using Lemma 2 we have therefore the identity

1
2
a
′′

v1
(t) =

∫
Ω

(
v̇1(t, x)2 + v1(t, x)v̈1(t, x)

)
dx

=
∫

Ω

(
v̇1(t, x)2 − |∇v1(t, x)|2 − v1(t, x)f(u0(x))

)
dx.

Suppose that vm+1 := Svm ∈ H2 is the existing solution of the IBVP for
the wave equation

2vm+1 + f(vm) = 0 in [0, T )× Ω, vm+1(t, x) = 0 on [0, T ]× ∂Ω,

vm+1(0, ·) = u0 ∈ H2(Ω) ∩H1
0 (Ω), v̇m+1(0, ·) = u1 ∈ H1

0 (Ω).

Then we have found that vm+1(t) ∈ H2(Ω) for each t ∈ [0, T ] and

E
′

vm+1
(t) =

d

dt

∫
Ω

(
v̇m+1(t, x)2 + |∇vm+1(t, x)|2

+2vm+1(t, x)f(vm(t, x))
)
dx = 0.

By Lemma 2 once more we obtain therefore the identity

1
2
a
′′

vm+1
(t) =

∫
Ω

(
v̇m+1(t, x)2 − |∇vm+1(t, x)|2

−vm+1(t, x)f(vm(t, x))
)
dx.
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After some long computations one can verify the following statements.

(1) vm is uniformly bounded in H1 and in H2.

(2) vm is a Cauchy sequence in H1 and in H2.

Hence we reach at the assertions of Lemma 4.
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