3. Problem definition

In this section, we first define a multi-dimension transaction database MD, to differentiate it between the transaction databases D in traditional association rules. Then, we discuss the concept hierarchy for each dimension in MD. We also develop a mechanism to produce multi-dimension patterns with different granularities related to each dimension in this section. At last, we define the multi-dimension association rules in this paper.

3.1. Multi-dimension transaction database

After joining several relative tables, we can obtain a big table to present not only which items are bought in a transaction, but also when, where and who performed this transaction. An example of this kind of table is shown in Fig. 3.1. We assume a transaction database with other attributes as a multi-dimension transaction database MD, to differentiate it between transaction databases D.

<table>
<thead>
<tr>
<th>T_ID</th>
<th>Date</th>
<th>Branch_No</th>
<th>Occupation</th>
<th>Sex</th>
<th>Age</th>
<th>Transaction content</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>05/03/01</td>
<td>003</td>
<td>Student</td>
<td>F</td>
<td>23</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>002</td>
<td>05/03/03</td>
<td>003</td>
<td>Student</td>
<td>M</td>
<td>14</td>
<td>Candy, Juice</td>
</tr>
<tr>
<td>003</td>
<td>05/03/01</td>
<td>003</td>
<td>Doctor</td>
<td>M</td>
<td>47</td>
<td>Beer, Diaper</td>
</tr>
<tr>
<td>004</td>
<td>05/03/01</td>
<td>003</td>
<td>Teacher</td>
<td>F</td>
<td>34</td>
<td>Juice, Tomato, Orange</td>
</tr>
</tbody>
</table>

Figure 3.1 Multi-dimension transaction database MD

In above table, we have five addition attributes: “Date” and “Branch_NO” are the time and place this transaction submitted, “Occupation”, “Sex” and “Age” are the profile of customer in this transaction. Except “Transaction content”, we assume each non-key attributes is a dimension in this paper, and each record in above table is a transaction. According to this definition, a transaction in MD is a tuple with the form in Fig. 3.2, where “T_ID”, transaction id, is used to identity each transaction, “Value
of Dimension$_x$” is the value of the x^{th} dimension in this transaction, and “TC”, transaction content, is a set of items which are bought in this transaction.

<table>
<thead>
<tr>
<th>T_ID</th>
<th>Value of Dimension$_1$</th>
<th>Value of Dimension$_2$</th>
<th>…</th>
<th>Value of Dimension$_n$</th>
<th>TC</th>
</tr>
</thead>
</table>

Figure 3.2 A transaction in MD

3.2. A dimension in MD

A dimension in MD is a non-key attribute except “Transaction content”, and we use dim_x to denote the x^{th} dimension in MD. To produce multi-dimension patterns at varying levels of abstraction in each dimension, we use a concept hierarchy tree to represent a “specific-to-general” way for each dimension. The CH_x is the concept hierarchy of dim_x. An example of CH_x is shown in Fig. 3.3. A dimension concept hierarchy CH_x is a tree structure with a root “any” covering all nodes in CH_x. An ancestor node in CH_x covers all its descendant nodes in CH_x. Each node in CH_x is a possible value of different granularities in dim_x. The root “any” is the biggest granularity of every dimension. The leaves of CH_x are *dimension atoms* of CH_x, and other non-leaf nodes in CH_x are *dimension compounds* as shown in Fig. 3.3. The *dimension atoms* and *dimension compounds* will be discussed respectively later.

Figure 3.3 CH$_1$ for dimension “Date”
Definition 1. \(\text{dim}_x \), the \(x \)th dimension of \(\text{MD} \), is a non-key attribute except “Transaction content”, and \(\text{CH}_x \) is the concept hierarchy of \(\text{dim}_x \).

3.2.1. Dimension atom

The leaves of \(\text{CH}_x \) are dimension atoms of \(\text{CH}_x \), since the other non-leaf nodes are compositions of them. We use \(\text{da}(x, s) \) to denote the \(s \)th dimension atom of \(\text{CH}_x \). A dimension atom is a possible value of \(\text{dim}_x \) in \(\text{MD} \) or a grouping values for \(\text{dim}_x \). For example, in the dimension “date”, the granularity “a day” may be too trivial to make strategies. We use “a month” to be the granularity of *dimension atoms* in the concept hierarchy of this dimension. In the “Age” dimension, we also can discretize the numerical data into category one (for example: child, teens, youth, adult) to be dimension atoms. All the *dimension atoms* in the same \(\text{CH}_x \) are mutual disjoint and form a complete partition of whole range of this dimension. That is, all the dimension atoms in a dimension can be used to divide \(\text{MD} \) into several mutually disjoint slices, there is an example shown in Fig. 3.4. Suppose the whole range of the dimension “date” is a year “2005”, and the granularity of the *dimension atoms* in this dimension is “a month”, all the \(\text{da}(1,s) \) divide \(\text{MD} \) into twelve mutually disjoint slices, and the twelve slices form a complete partition of \(\text{MD} \).

\[
\]

![Figure 3.4 Example of dimension atom in dimension “Date”](image)
Definition 2.1. \(\text{dim}_x = \{ \text{da}(x, s) \} = \{ \text{da}(x, 1), \text{da}(x, 2), \ldots, \text{da}(x, n) \} \),
where \(\text{da}(x, s) \) (\(s = 1 \) to \(n \)) is the \(s \)th dimension atom of \(\text{CH}_x \).

Definition 2.2. In the same dimension \(\text{dim}_x \),
\[
\{ \text{transactions of } \text{da}(x, s) \} \cap \{ \text{transactions of } \text{da}(x, t) \} = \phi \text{ (if } s \neq t \text{)}
\]
\[
\bigcup_s \{ \text{transactions of } \text{da}(x, s) \} = \text{MD}
\]

3.2.2. Dimension compound

Other non-leaf nodes in \(\text{CH}_x \) are dimension compounds, since they are the combination of several dimension atoms. We use \(\text{dc}(x, t) \) to denote the \(t \)th dimension compound in \(\text{CH}_x \). The dimension compounds in the same level are mutually disjoint. An example of dimension compounds is shown in Fig. 3.5. In Fig. 3.5, dimension compound “2005 Spring” is the combination of tree dimension atoms: “2005 Mar”, “2005 Apr” and “2005 May”.

Definition 3.1. \(\text{dc}(x, t) \), the \(t \)th dimension compound in \(\text{CH}_x \), consists of one or more dimension atoms in \(\text{dim}_x \), is a non-leaf node in \(\text{CH}_x \).

Definition 3.2. \(\text{dc}(x, t) = \{ \text{da}(x, s_1), \text{da}(x, s_2), \ldots \} \)
\[
|\text{dc}(x, t)| \text{ is the number of dimension atoms which belong to } \text{dc}(x, t),
\]
\[
\text{dc}(x, t_1) \subseteq \text{dc}(x, t_2) \text{ if and only if } |\text{dc}(x, t_1)| \leq |\text{dc}(x, t_2)| \text{ and all dimension atoms which belong to } \text{dc}(x, t_1) \text{ also belong to } \text{dc}(x, t_2),
\]
\[
\text{dc}(x, t_1) \cap \text{dc}(x, t_2) = \phi \text{, except } (\text{dc}(x, t_1) \subseteq \text{dc}(x, t_2)) \text{ or } (\text{dc}(x, t_2) \subseteq \text{dc}(x, t_1)).
\]
3.2.3. Concept hierarchy with lattice structure

To make our definition easier to understand, we define our concept hierarchy a tree structure. Actually, we also can define a lattice represented to improve the presenting ability of our concept hierarchy. An example in dimension “location” is shown in Fig. 3.6. In this concept hierarchy with a lattice structure, a successor node can has more than one predecessor. That is, the disjoint limit among dimension compounds in above definition can be ignored. Other definitions of a tree structure concept hierarchy above are also work in a lattice structure one in our work.

![Lattice Structure Concept Hierarchy](image)

Figure 3.6 An example of lattice structure concept hierarchy

3.3. Multi-dimension pattern

Given a set of concept hierarchies \(\{CH_1, CH_2, CH_3, \ldots, CH_n\}\), where \(n\) is the number of dimensions. A multi-dimension pattern \(P\) has this form \(<p_1, p_2, \ldots, p_n>\) together with a valid constraint. We use \(p_k\) to denote a pattern item related to \(dim_k\), and \(p_k\) is a node in \(CH_k\). For example, \(<2005\ \text{Jan, North Taiwan, Student, Male, Child}>\) and \(<2004\ \text{spring, Branch003, Any, Any, Any}>\) are two multi-dimension patterns. For simplifying the representation of multi-dimension patterns, the pattern item “Any” can be ignored, since “Any” can be interpreted as “don’t care”. For example, \(<2004\ \text{North Taiwan, Retail store, South Taiwan, Near by school, Branch04, Web}>\)
spring, Branch003, Any, Any, Any> can be simplified to <2004 spring, Branch003>.

If all of the pattern items in \(P \) are “Any”, we call this pattern a universal pattern, and donated by \(P_u \). The constraint valid is a Boolean function, this constraint serves two purposes. The first is to exclude the combinations that do not exit. For example, suppose we have a multi-dimension pattern \(<2004, Branch004>\), but the retail store “Branch004” didn’t open in 2004. The second purpose of the valid constraint is to exclude the patterns that we are not interested in. A multi-dimension pattern \(P_1 \) is covered by a multi-dimension pattern \(P_2 \), if and only if each pattern item \(p_{kl} \) in \(P_1 \) is covered by \(p_{k2} \) in \(P_2 \). For example, the \(<2005\text{ Mar}, \text{ North Taiwan}, \text{ Student}, \text{ Male, Child}> \) is covered by \(<2005\text{ spring}, \text{ Taiwan}, \text{ Any, Male, Any}>\).

Definition 4.1. multi-dimension pattern \(P = <p_1, p_2, ..., p_n> \) together with a valid constraint, where pattern item \(p_k \) (k = 1 to n) is a node in \(CH_k \).

Definition 4.2. \(|p_k| \) = the number of dimension atoms covered by \(p_k \). If \(p_k \) is a dimension atom, \(|p_k| = 1 \).

Definition 4.3. Suppose \(P_1 \) and \(P_2 \) are two multi-dimension patterns,
\[P_1 = <p_{11}, p_{12}, ..., p_{1n}> \subseteq P_2 = <p_{21}, p_{22}, ..., p_{2n}>, \]
if and only if
\[\forall k \ (k = 1 \text{ to } n) \ p_{1k} \subseteq p_{2k}. \]

Definition 4.4. \(P = <p_1, p_2, ..., p_n> \) is a universal pattern and is denoted by \(P_u \) if and only if \(\forall k \ (k = 1 \text{ to } n) \ p_k = \text{“Any”}. \)

3.3.1. Element patterns and generalized patterns

A multi-dimension pattern is an element pattern if and only if every \(p_k \) in this pattern is a dimension atom. On the other hand, if at least one of them is a dimension compound, we call this pattern a generalized pattern. For example, \(<2004 \text{ Mar, Branch003, Student, Female, Youth}> \) is an element pattern, \(<2004 \text{ spring, Any, Any, Any}> \)
Female, Youth> is a *generalized pattern*, and both them are *multi-dimension patterns*. We use E_i to denote the i^{th} *element pattern*, and use G_j to denote the j^{th} *generalized pattern*.

Definition 5.1. A multi-dimension pattern $<p_1, p_2, \ldots, p_n>$ is an element pattern E_i if and only if $\forall k (k = 1 \text{ to } n)$ p_k is a *dimension atom*.

Definition 5.2. A multi-dimension pattern $<p_1, p_2, \ldots, p_n>$ is a generalized pattern G_j if and only if $\exists k (k = 1 \text{ to } n)$ p_k is a *dimension compound*.

3.3.2. Element segmentations

We can use *dimension atoms* of each dimension to dice the *multi-dimension transaction database* MD into several mutually disjoint hyper-cubes as in Fig. 3.7. Each hyper-cube enclosed by an *element pattern* E_i contains a set of transactions whose attribute of each dimension is covered by correspond p_k in E_i. We denote the set of transactions which are in the hyper-cube enclosed by an *element pattern* E_i as $T[E_i]$. We call $T[E_i]$ an *element segmentation* in MD. Given a minimum number of transactions mintrans, an *element segmentation* $T[E_i]$ is valid if and only if E_i is a valid *element pattern*, and the number of transactions in $T[E_i]$ exceed mintrans. An example of *element segmentation* which is enclosed by $<2004 \text{ Apr, Branch003, Adult}>$ is shown in Fig. 3.8.

![Figure 3.7 Hyper-cubes diced by dimension atoms.](image-url)
Figure 3.8 An example of element segmentation.

Definition 6.1. \(T[E_i] = \{\text{transactions which belong to } E_i\} \),

\(|T[E_i]| = \text{the number of transactions which belong to } E_i \).

\(T[E_i] \) is valid if and only if \(E_i \) is valid and \(|T[E_i]| \geq \text{mintrans} \).

Definition 6.2. \(T[E_{i1}] \cap T[E_{i2}] = \phi \) (if \(i1 \neq i2 \)).

3.3.3. Combination segmentations

A generalized pattern also forms a hyper-cube in MD. We denote the set of transactions whose attribute of each dimension is covered by correspond \(p_k \) in generalized pattern \(G_j \) as \(T[G_j] \). We call \(T[G_j] \) an combination segmentation in MD, since a combination segmentation is composed of several element segmentations. Such conception is shown in Fig. 3.9. In Fig. 3.9, the combination segmentation \(<2004\text{ spring, Branch003, Adult}>\) is composed of three element segmentations: \(<2004\text{ Mar, Branch003, Adult}>\), \(<2004\text{ Apr, Branch003, Adult}>\), and \(<2004\text{ May, Branch003, Adult}>\). Given a minimum number of element segmentations covered \(\text{mincover} \), a combination segmentation \(T[G_j] \) is valid if and only if \(G_j \) is a valid generalized pattern, and the number of valid element segmentations covered by \(T[G_j] \) exceed \(\text{mincover} \).
Figure 3.9 A combination segmentation is composed of element segmentations.

Definition 7. \(T[G_j] = \{ \text{transactions which belong to } G_j \} \),

\(T[G_j] \) covers \(T[E_i] \) if and only if \(\forall \) transactions belong to \(T[E_i] \) also belong to \(T[G_j] \).

\(|T[G_j]| \) = the number of valid \(T[E_j] \) covered by \(T[G_j] \).

\(T[G_j] \) is valid if and only if \(G_j \) is valid and \(|T[G_j]| \geq \text{mincover} \).

Lemma 1. Given a generalized pattern \(G_j = \langle p_1, p_2, \ldots, p_n \rangle \), the number of (valid and invalid) \(T[E_i] \) covered by \(T[G_j] \) = \(\prod_{k} |p_k| \).

3.4. Multi-dimension association rules

A multi-dimension association rule over a set of concept hierarchies is a pair \((P, r)\), where \(P \) is a multi-dimension pattern and \(r \) is an association rule. In the following, we identify several classes of multi-dimension association rules on which we will focus in this paper.

3.4.1. Multi-dimension association rule w.r.t full match

Given a multi-dimension transaction database \(\text{MD} \), a \(\text{minsup} \), and a \(\text{minconf} \). A *multi-dimension association rule w.r.t full match* \((G_j, r)\) holds in \(\text{MD} \) if and only if the association rule \(r \) holds in every *element segmentation* \(T[E_i] \) which are covered by \(T[G_j] \). We draw on “full match” after this kind of multi-dimension association rules, since this kind of association rules not only hold in \(T[G_j] \)(Lemma 2), but also hold in
every meaningful dice of $T[G_j]$(Lemma 3).

Definition 8. Given a *multi-dimension transaction database* MD, a *minsup*, and a *minconf*: (G_j, r) is a *multi-dimension association rule w.r.t full match* if and only if G_j is valid and $\forall T[E_i] \subseteq T[G_j]$, r holds in $T[E_i]$ or $T[E_i]$ is invalid.

Lemma 2. If (G_j, r) is a *multi-dimension association rule w.r.t full match* in MD, r must be an association rule in $T[G_j]$. (A prove is given in Appendix B)

Lemma 3. If (G_j, r) is a *multi-dimension association rule w.r.t full match* in MD, and G_j is an universal pattern P_u, which means that $T[G_j] = MD$, r must be an association rule in any dice of MD. (A prove is given in Appendix B)

3.4.2. Multi-dimension association rule w.r.t relaxed match

Multi-dimension association rule w.r.t full match may be too restrictive in some application. Instead, we may only require that the association rule holds in “enough” number of *element segmentations*. Given a *multi-dimension transaction database* MD, a *minsup*, a *minconf*, and a match ratio m $(0 < m \leq 1)$, a *multi-dimension association rule w.r.t relaxed match* (G_j, r) holds in MD if and only if at least $100m\%$ of the *element segmentation* $T[E_i]$ covered by $T[G_j]$, the association rule r holds in $T[E_i]$.

Definition 9. Given a *multi-dimension transaction database* MD, a *minsup*, a *minconf*, and a *match ratio* m $(0 < m \leq 1)$, (G_j, r) is a *multi-dimension association rule w.r.t relaxed match* if and only if G_j is valid and (number of valid $T[E_i]$, where $T[E_i] \subseteq T[G_j]$ and r holds in $T[E_i]$) / (number of valid $T[E_i]$, where $T[E_i] \subseteq T[G_j]$) $\geq m$.
