A Learning-to-Change Thesis of E-learning:
A Proposal for Design-Based Research

Lee, Tsang-Hsiung
Department of Management Information Systems,
National Cheng-Chi University, Taiwan

ABSTRACT

Contemporary learning theories inform online teachers to (re)design the course to be more authentic, flexible, and most importantly, learner-centered. However, to have a real impact on the reality, still not much literature address how to implement these web-based pedagogies, and more importantly, why certain less-than-desired outcomes often observed in practice? A phenomenon we observed that unexpected emergence of systemic changes, or even transformation, seemed quite common at the level of a course. Among these changes, learning to change in BOTH teaching and learning to achieve high quality learning (we called it a learning-to-change thesis) is possibly one of the most critical, which lack of research in the present literature. This study explored some possibilities of conducting design-based research for this thesis in the future studies.

INTRODUCTION

The Internet-based learning platforms spread widely and swiftly across almost every campus. The predominant view of situated cognition in e-learning and its associated pedagogies such as distributed learning, open learning, learning communities, communities of practice, and knowledge building communities were all under heavy experimentation (Dabbagh, 2005). Education professionals have thus experienced tremendous pressures toward the transformation in instructional theory and practice.

We are moving from standard mode of transmission toward more authentic, flexible, and most importantly, learner-centered. Is this popular assertion a merely conception or a surely truth? It is believed by the author that a clear answer for this simple question lies just in between. A more meaningful question to ask may be how one can make this conception into a reality, and with an acceptable price. Design is the key (Reigeluth, 1999). In this regard, not only learning technology but also instructional strategies and pedagogical models should be re-designed to achieve a synergy (Dabbagh, 2005).

The authors have experimented new models of web-based, learner-centered teaching for several years. According to this experience, and those of many others appeared in the literature, emergence of systemic changes in BOTH teaching and learning seemed inevitable. For example, without un-freezing of old ways of teaching and learning and motivating for acquiring new skills of self-regulated learning, stakeholders in e-learning certainly will maintain their usual styles of thinking and behavioral routines to resist in climbing a stiffed learning curve. As a result, a distinct variation of learning outcomes, or a large proportion of less-than-desired results was often observed. We believed that failures to manage these emergent changes may jeopardize e-learning success for the professional. To overcome this inevitable resistance to change, conceptual frameworks and innovative measures should be devised. To respond to this challenge, this study proposed some possibilities of design-based research in support of effective changes.
THEORETICAL BACKGROUNDS

Incorporating e-learning into our own practices of teaching in higher education is the context of this study. To effectively research on and within this innovative context, we re-examine our epistemological beliefs in theory of practice, conceptions about instructional-design theory, and causal mechanisms effecting systemic changes in teaching and learning.

Theory of Practice

Practical situations can be characterized as constantly changing, highly indeterminate, unstable, unique, conflicted in value, etc (Schön, 1983). Ackoff (1999) called such situations as messes. We often follow a technical rationality to simplify such messy situations by looking for the most effective means to achieve certain ends. Ackoff believed that this is the wrong approach.

Schön approached above messes by reflection-in-action (1983). Through constant dialogues with the present situation while acting, one may critically reflect upon unexamined and important assumptions embedded in actions and associated contexts. This may greatly inform a decision maker to re-frame a situation which can much easier to be resolved.

Practical knowledge is context-specific and consists of ‘repertories of examples, images, understandings, and actions.’ (ibid., p.138) Moreover, practical knowledge can also be generalized, for example, ‘professional practice also includes an element of repetition. A professional practitioner is a specialist who encounters certain types of situations again and again.’ (ibid., p.60.)

Design Theory

Van Aken (2004) distinguished design sciences from explanatory sciences. While applying the latter to describe, explain, or even predict the social phenomenon, we deploy the former to improve our practice. Claims involving actionable knowledge look like: ‘In the situation Z, to achieve Y, take actions X.’ Z, X, and Y are all theoretical constructs. X is a design or solution concept involving an action or process, a collective of actions or processes, etc. A design theory is actually a design exemplar or a set of guidelines providing insights for the practitioner to initiate their own actions. A re-design by following a design theory to suit their specific situation is thus required. In the domain of education, Reigeluth (1999) assembled a pool of instructional-design theories.

To improve practice in the situation of messes, Ackoff (1999) suggested an interactive planning process including an idealized design about the future state. With this design in mind, one may look back to the present situation to plan, take actions, and then adapt to any emergence in the new situations.

Generative Patterns

Kvernbekk (1999) considered practical knowledge as a kind of causal knowledge, linking outcomes with actions being taken. This definition places actions as the center of knowledge claims. He believed this actionable knowledge can be generalized, and is consistent with practitioners’ orientation toward increasing likelihood of success, both in professional images and in business results, through knowledgeable actions.

Two main theories of causality can be differentiated, the succession theory and the generative theory. According to Pawson & Tilley (1997), realists believed that causal outcomes follow from mechanisms acting in contexts. Mechanisms are about people’s choices and the capacities they derive from group membership. A mechanism is thus ‘not a variable but an account of the make-up, behavior
and interrelationships of those processes which are responsible for the regularity’ observed in the social phenomenon (ibid., p.68). It is our estimation that the emergent systemic changes observed in complex learning situations, as stated in the beginning part of this paper, is such an account lacking research in the current literature.

Richter & Albert (2004) outlined a pattern-oriented research strategy for complex learning environments. They suggested to open up the black box to examine in more detail how e-learning works instead of merely asking if a certain educational approach works. This strategy serves not only the purpose of facilitating improvements in practice, but also the purpose of producing generalized knowledge. These two purposes are strongly interrelated in practice. With similar interests, we chose action research to conduct the empirical study.

THE EMPIRICAL STUDY

We chose to do multiple rounds of action research on a course titled “Action Research.” Students participated in this elected course are all in-service high school teachers. In the summer time, these students enrolled eight courses and all courses last for an eight weeks’ period. Each course was condensed into four-hour class time, i.e. two credit hours in equivalents.

The first author taught this course for the first time in 2003 (a snapshot of the class, see figure 1). At that time, he is an active researcher in the domain of case study research and e-learning. However, this is his first trial on teaching action research. While he is quite familiar with business professionals, this is his first contact with a student population such as education professionals. In addition, the unfamiliar condensed course format and new e-learning platform all contribute toward messes. After that some what less-than desired initial attempt, the first author has continued his trials for several times.

Research data were collected throughout the whole course. Data resided on course website include forum, reflective learning journals, assignments, quiz, project reports, etc. In addition to that, we audio-taped and then transcribed the whole class sessions, including all lecturing and discussions in open public. We also administered questionnaires at time periods of pre-, mid-, and post-. All these data constitute a complete record of a case for further analysis.

Figure 1: A Snapshot of the Class
We adopted the analysis approach of pattern matching proposed by Yin (1994) and Richter & Albert (2004). We used data of the first and second rounds of action research as a baseline to outline two competing but equally plausible accounts (see figure 2 below) explaining noticeable regularities in students’ learning outcomes. Then, we applied a set of data from the third round of action research to test if they fit predicted patterns suggested by these two accounts. What we presented here are only preliminary results, mostly based on observations on site and readings in web site.

Alternative Accounts Explaining Outcomes Observed

Alternative accounts that described what happened and how they worked was illustrated. We presented our findings as premises (we called this learning-to-change thesis), as appeared in Figure 2. We believed that desirable learning outcomes can be achieved if the teacher aligns pedagogical designs with interventions on learning to change, and as for implementation, if the teacher plays important roles of community builder and mentor, and/ or individual student successfully adapts to a new way of e-learning.

![Figure 2: Alternative Accounts of Mechanisms Driving Toward Successful Learning Outcomes](image)

While each round of action research had a blueprint of designs (website design and course syllabus) in mind, however, discrepancy results in terms of teaching and learning activities not in alignment with original designs and unexpected changes were witnessed in the first two rounds of studies. Constrained by limited pages available, we chose to present only the most convincing evidence to refute the account of conventional wisdom (see the upper part of Figure 2).

A PROPOSAL FOR DESIGN-BASED RESEARCH

To respond to the above challenges, over the years we have evolved some principled designs which may be characterized as follows: 1) Teachers facilitate a deep approach to learning through authentic situation, problem-based learning, preview and collaborative learning. 2) Teachers facilitate students’
transformation in learning; conditioned by priori knowledge and behavior routines favoring memorizing and testing, a staged model of fostering self-regulated learning were devised, weekly diary and learning portfolio were deployed to promote reflective practice, and finally, a growing community of active learners may become a driving mechanism leading to more students conceiving change in learning approach is important.

To strengthen the above designs, two projects are now underway to help feedback students’ learning outcomes even faster, in-depth, and more visible and meaningful. One is called Learning Dashboard project, the other is Learning Intelligence Support project. We will flesh out some features of these systems or environments developed in the revision of this paper.

By following the logic of live or design experiment such as that of promoted by Buderson and Newby, what we are looking for are theory-based evidences to support how to design and modify our practices in teaching and learning. This is consistent with what Reigeluth (1999, see chapter 26) has suggested to adopt a multi-method approach to combine action research, single holistic case study, and formative evaluation. Buderson and Newby provided a way of conducting successive live experiments by employing invariant measures of learning outcomes and then developing/ testing theories (they called domain theories) via comparing data collected from different rounds of experiments.

Toward High Quality Learning Outcomes

We are constantly striving for not just delivering high quality teaching but high quality learning. Measures of success for student learning outcome may differ from courses and teachers. In addition to the traditional measures, however, we chose to study the learning approach adopted by students. More engaged in learning for the whole class was targeted in particular. Along this line of thought, Niemi, Nevgi, and Virtanen (2003) provided useful measurement tools and ways to interpret such data.

Evolution of Web-Based Pedagogical Designs

With previous reviewed theory of practice in mind, we emphasized reflective practice through both self-report and dialogues in action learning set meetings. We also requested that each student completes a term project to conduct his own action research. This course design laid a common foundation for all three trials. In addition to this basic design, variation in each implementation and emergence of systemic changes are listed in the following Table 1.

<table>
<thead>
<tr>
<th>Designs\Trials</th>
<th>2003</th>
<th>2004</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning platforms</td>
<td>Open sourced, general purposed Content Management System (Xoops), located in a third-party server</td>
<td>Software is the same as 2003, but located on the first author’s own server and with a new design of user interface</td>
<td>Moved to Moodle, an open sourced, social constructivism-based, course management system, located on the first author’s own server</td>
</tr>
<tr>
<td>Authenticity</td>
<td>Moderate</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Learner-Centeredness</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Role of Teacher</td>
<td>Subject expert, agenda setter,</td>
<td>Subject expert, resources provider, agenda setter,</td>
<td>Mentor, learning designer, goals setter, means (for effective learning) provider, developer of learning community</td>
</tr>
</tbody>
</table>
Role of Learners

<table>
<thead>
<tr>
<th>Learners</th>
<th>Most are passive learner</th>
<th>Some are active learners but most are still rather passive</th>
<th>Aware, accept and adapt to a new role of active learner, become self-regulated learner</th>
</tr>
</thead>
</table>

Teacher’s Learning to Change

<table>
<thead>
<tr>
<th>Presence of mentor, slow to none of change</th>
<th>Adept to new situations</th>
<th>Alignment in both theory and practice, being transformed</th>
</tr>
</thead>
</table>

Learners’ Learning to Change

<table>
<thead>
<tr>
<th>Seldom to appear</th>
<th>Seldom or slow to appear</th>
<th>Most and fast to appear</th>
</tr>
</thead>
</table>

Idealized Design Conceived in Final Report of Action Research Project

<table>
<thead>
<tr>
<th>Almost none, awareness low</th>
<th>Almost none, awareness moderate</th>
<th>Some, awareness rather high</th>
</tr>
</thead>
</table>

We may conclude from reading this list of emergent changes that teacher’s and students’ learning to change did contribute to desired learning outcomes. The focal teacher (the author) took more time (over three years) to be transformed into a competent learning designer. The participating students experienced similar requirements of learning to change in all three rounds of action research. However, in the latter round, students’ learning to overcome resistance to change is much effective and learning results more desirable.

We believed that improving our teaching practice to lead professionals’ learning to change is a never-ending process. In this regard, innovative measures based on e-learning platform to further improve the messy situation are under authors’ construction right now.

Evolving Designs of Interventions in Learning to Change

A recent study of students’ learning experience has revealed that successful learning outcomes are positively related to the deep learning approach deployed by students (Cope, 2000). Over the years, the authors have evolved a complex set of designs useful to dealing with the requirement of constant changes in not just the teacher side, but more importantly, the student side. To be short, we promoted reflective practices in both teaching and learning to help resolve these issues.

Specifically, we applied an action theory of planned change. The teacher facilitated students to continuously dialogue with the situation of learning and urged critical reflection. For example, students kept a learning journal and wrote regularly, a reflection framework linking outcomes with actions was advised by the teacher, students should diagnose the problematic situation before took actions on, from multiple perspective and based on evidence, the deep structure underneath less-than-desired results, etc. More, a peer-supported group functioned well in a form of face-to-faced meeting where peers play the role of trustable mentor, and within online communities of practices.

In teacher’s side, once we climbed over stiffed learning curve, then we conducted multiple rounds of design experiments, through continuing dialogue with situation of practice, and with the extant literature.

Seeking Constructive Alignment in Each Implementation and Striving for Continuous Improvement

We believed that it is important not only in constructively aligning between designs of web-based pedagogies and interventions in learning to change in teaching and learning, but also in mindfully achieving significant impacts on student learning in each round of implementation which may very likely
involve messy situations. Moreover, we believed that a mindset of constantly striving for improvement in BOTH sides of teachers and students may be the key for high impacts or long-term success of e-learning. We are looking for practical strategy toward this kind of results and thus plausible explanations in accordance.

CONCLUSIONS

Toward enhanced professional learning via e-learning is not only a fast growing business but also a real challenge attracting much attention from professional students, faculty members in higher education, and most importantly the school administration. Based on our own experiences in conducting a series of action research and field experiments, we present a learning-to-change thesis and convincing evidence to complement conventional wisdom of web-based pedagogical designs. We hope that this thesis may shed some lights to account for less-then-desired results often reported in the literature. Thorough analysis of the phenomenon and more rigorous testing of the thesis are needed in the future studies.

REFERENCES