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Stability of positive solutions for some semilinear wave
equations under nonlinear perturbation near blow-up
solutions in 3-space dimension

Ou-uvw+aul=0
Meng-Rong Li

Department of Mathematical Sciences National Chengchi University

Abstract In this research we treat the stability of positive solutions of some
particular semilinear wave equations under nonlinear perturbation in bounded do-
main near blow-up solutions in 3-space dimension.

1. INTRODUCTION

Consider the initial value problem for the semilinear wave equation of the type

(0.1) Outg(u)=0 in [0,T)xR?,

(02) u (Ov ) = ug, U (07 ) = Uy,

where g : R — R is a real valued function, the initial data are given sufficiently
smooth functions and Ou := uy — Au, A is the Laplace operator. The linear

case g(u) = mu, where m is a constant, corresponds to the classical Klein Gordon
equation in relativistic particle physics; the constant m is interpreted as the mass
and is assumed to be nonnegative generally. To model also nonlinear phenomena
like quantization, in the 1950s equations of (0.1) type with nonlinearities like g(u) =
mu + u3; m > 0; were proposed as models in relativistic quantum mechanics with
local interaction. Solutions could be considered as real or complex valued functions.
In the latter case it was assumed that the nonlinearity commutes with the phase;
that is, g (e*°u) = ee?g (u) for ¢ € R and that g(0) = 0. In this case, g may

be expressed g(u) = uf (|u|2), which gives the study of equation (0:1) [J]. In the
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noncoercive case it is easy to construct solutions of (0.1) with smooth initial data
that blow up in finite time; for instance, for any « > 0 the function wu(t;z) =
(1 — ¢)~Y™ solves the equation Du + (1 + a)u|u/*™ = 0;m € N and blows up
at t = 1. Modifying the initial data off {z : |x| < 2}, say, we even posses a singular
solution with C'°°-data having compact support.

In this study we want to deal with the stability of positive solutions for the
semilinear wave equation

(1.1) Ou=u?+M?in [0,T) x Q,Q C R?
with boundary value null and initial values u (0,-) = ug (-) € H2 ()N H} (Q) and
@ (0,-) =uy (-) € Hg (), where p,q € (1,00) and € is a bounded domain in R3.

We will use the following notations:
0%u i 0%u . 0%u
821'1 821'2 821'3 ’

0 .
ci= E,Du = (4, Vu), Au =

2 2
a(t) = /QUQ (t,x)dz, By (t) ::/Q <|Du2 - mu”“ - (]—i—/\luqH) (t,x) du.

For a Banach space X and 0 < T < oo we set
C* (0, T, X) = Space of C¥ — functions : [0,T) — X,

H1:=C"(0,T,Hj () NC?(0,T,L* ().

The existence result to the equation (1.1) is proved [Li 3] and the positive solu-
tion blows-up in finite time if A > 0 [Li 2], this means that the positive solutions
for the semilinear wave equation

(1.2) Ou=u"in [0,T) x Q,
u(0,) = up () € H* () N Hy (Q)

w(0,) =1 (-) € Hy (Q),

is stable under nonlinear perturbation Au? providing p > 1, > 1, A > 0; but it is
not clearly whether it is also true for any p > 1,¢ > 1, A < 0 7 If so, we would
want to estimate the blow-up time and the blow-up rate under such a situation.

It is also important to study the asymptotic behavior of the solution uy; the
velocity and the rate of the approximation for A approaches to zero.

Such questions are also not easy to answer even under the case for the ordinary
differential equation

(1.3) u’ =P (c+ M (1)),

u (0) = ug, v’ (0) = uq,

where p > 1,q > 1,¢ > 0, > 0. We have studied the blow-up behavior of the
solution for problem (1.3) and got some estimates on blow-up time and blow-up rate
[Li4] but it is difficult to find the real blow-up time (life-span). Further literature
could be fund in [S], [R], [W1] and [W2].
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In this study we hope that our ideals used in [Li 2], [Li 4], [Li 5],[Lé 7], [Li8], [LiLinShieh], [ShiehLi]
and [SLLLW] can do help us dealing such problem (1.1) on our topics.

2. Definition and Fundamental Lemma
There are many definitions of the weak solutions of the initial-boundary problems

of the wave equation, we use here as following.

Definition 2.1: For p > 1, uw € H1 is called a positive weakly solution of
equation (1.1), if

/ / (w(r,z) @ (r,z) + (uP + Au?) (r,x) ¢ (r, x)) dedr
0 JQ

¢
:/ /Vu(r,z)~Vg0(r,x)dmdrVgﬁ€Hl
0 JQ

and

t
/ / w(r,x) Y (r,x) dedr >0

0 Jo
for each positive ¢ € C§° ([0,T) x Q).

Remark 2.2:

1) The definition 1.1 is resulted from the multiplying with ¢ to the equation
(1.1) and integrating in €2 from 0 to ¢.

2) From the local Lipschitz functions u? + Au?,p > 1,q > 1 the initial-boundary
value problem (1.1) possesses a unique solution in H1 [Lil]. Hereafter we use the
notations:

r oul| 1
Cﬂ.msup{HuHQ/Hax 2.uEHO (Q)},

Ju
A, = sup {||U|q/H8H cu € Hy (Q)N L, (Q)} ,q> 1.
Tll2
In this study we need the following lemmas

Lemma 2.3: Suppose that uw € H1 is a weakly positive solution of (1.1) with
E)(0) =0forp>1,q>1, then for a(0) > 0 we have:
i)a e C?(RY) and Ey (t) = E\(0) Vte[0,T).

(
(i) ' (t) >0 Vt€[0,T), provided a' (0) > 0.
(iii) ' (t) >0 Vt € (0,T), if o’ (0)=0.
(iv) For a/ (0) < 0, there exists a constant to > 0 with
a (t) >0 Vt>tg
and a' (to) = 0.



Lemma 2.4: Suppose that w is a positive weakly solution in H1 of equation
(1.1) with u(0,-) =0 =u(0,-) in L2 (). For p > 1,¢ > 1,\ > 0, we have u =0
i HI1.

According to Lemma 2.4, we discuss the following theme

(3) EA(0) =0,a(0) >0 and o’ (0) > 0 or a’/ (0) < 0.

(4) E5(0) < 0,a(0) >0 and &’ (0) >0 or a’ (0) < 0.

3. Estimates for the Life-Span

3.1. Estimates for the Life-Span of the Solutions of (1.1) under Null-
Energy. We study the case that Ey (0) =0, p>1,¢ > 1,A > 0 and divide it into
two parts

(i) a (0) > 0,a’ (0) > 0 and (ii) a (0) > 0,a’ (0) < 0.

Remark 3.. 1) The local existence and uniqueness of solutions of equation (1.1)
in H1 are known [Li 2].

2) For A =0, x p > 1 and E) (0) = 0, the life-span of the positive solution
u € H1 of equation (1.1) is bounded by

k
T<ap:= k;l sin™! szl
kia T (0)

with
p—1 _»2 _ p—1
b= (0)1/a’ (0)a=2 (0) +4C3, ky = S Co,
1
g =M= sup {||ully / [ Dully : u € Hy (Q)} .

3.2. Estimates for the Life-Span of the Solutions of equation (1.1) under
Negativ-Energy. We use the following result and those argumentations of proof
are not true for positive energy, so under positive energy we need another method
to show the similar results.

Lemma 3: Suppose that uw € H1 is a positive weakly solution of equation (1.1)
with a (0) > 0 and Ey (0) <0 for A=0. Then

(i) for o’ (0) > 0, we have o’ (t) >0 ¥t > 0.
(i) for o' (0) < 0, there exists a constant t5 > 0 with
a (t) >0 Vt>ts, a (t5) =0
and
—a’(0)
(p—1) (02 = Ex(0))
where & is the positive root of the equation
2

P+1”\§11'TP+I—T2+EA(0)=0~

t5 St(} =




4. Stability of positive solutions of equation (1.1) near blow-up
solutions under Negativ-Energy

In this study we use our ideals used in [Li 2], [Lé 4], [Li 5],[Lé 7], [Li8], [LiLinShieh], [ShiehLi]
and [SLLLW] to deal such problem (1.1) on our topics under negative energy and
obtain the following results:

Theorem 4.1: Suppose that uy € H1 is a weakly positive solution of (1.1) with
E\(0) <0forp>1,qg>1, then for a(0) > 0 we have:

The equation (1.1) is stable for X — 0F; this means that weakly positive solution
uy of (SL) blows up in finite time for A — 0F.

Theorem 4.2: Suppose that uy € H1 is a weakly positive solution of (1.1) with
E)(0) <0forp>1,q>1, then for a(0) > 0 we have:

The equation (1.1) is stable for p > q, A — 07; this means that weakly positive
solution uy of (1.1) blows up in finite time for p > q, A — 0.

Theorem 4.3: Suppose that uy € H1 is a weakly positive solution of (1.1) with
Ey\(0) <0 for p>1,q>1, then for a(0) > 0 we have:

The equation (1.1) is unstable for p < q, A — 07; this means that some weakly
positive solution uy of (1.1) blow up in finite time for p < q, A — 07; but also
there were some global weakly positive solution uy of (1.1) for p<gq, A — 0~.

Remark:

The decade rate of the difference of life-spans T of uy and T of u, can not be
estimated very well for A — 0; thus it will be a good topic on asymptotic behavior
near the blow-up solutions.
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