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Abstract

Quanto Ratchet EI1As link to foreign investments and provide options-like properties.
The literature covers the pricing of the EIAs that are not quantos. This paper intends
to fill the hole. To derive the pricing formulas, we added an exchange rate model as
well as a foreign risk-free rate model to the pricing framework of Black and Scholes.
Our formulas cover quanto ratchet EIA products for both compound and simple
versions that may have a return cap and employ two types of geometric return
averaging. We further provide numerical analyses on how contract features and

market parameters affect the contract value.

Keywords: Equity-indexed annuities, foreign exchange, risk-neutral valuation.
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1. INTRODUCTION

Since the recent turmoil in financial markets, products that eliminate the downside
risk while still providing upside potential are in great demand. Equity-indexed
annuities (EIAs) are such products. An EIA is a hybrid between a variable and a
fixed annuity that allows the policyholder to participate in the potential appreciation
of the stock market while eliminating the downside risk by a minimum return
guarantee.  The sales in 2008 is $26 billion, a 6% increase over 2007, and the sales
in 2009 is $30.1 billion, a 15.4% increase over 2008."

The product designs of EIAs are diverse, but can be divided into three major
categories: point-to-point, ratchet, and look-back (including the high-water-mark and
Asian-end designs). The return of the point-to-point EIA is determined by the
realized return of the linked index between two time points. Ratchet EIAs are more
favorable because returns are credited periodically with a guaranteed minimum and
the account value never decreases once the return is credited. A popular design of
the look-back EIA is the high-water-mark that earns the highest return on the index
attained during the life of the contract.

Among the three categories, ratchet EIAs are the most popular in the markets.

Ratchet EIAs may vary in contract features such as reset frequency, return

! Please see online reports on Advantage Compendium (http://www.indexannuity.org)
7



accumulation, return cap, and return averaging. Most ratchet EIAs have the

annual-reset feature meaning that the return is credited to the contract annually. The

annual return may be accumulated in two ways. The simple version of ratchet EIAs

add the annual returns up to give the final payout while the returns in the compound

version are accumulated compoundedly.  To reduce the costs of EIAs, the insurer

may place a fixed upper limit, also called ceiling or cap, on the annual return. It may

also employ an averaging scheme in calculating the annual return to reduce the

volatility of credited returns and thus the costs of guarantees. For instance, an

insurer may calculate the geometric average of the index return over several

sub-periods as the credited return of the period.

The pricing and hedging of EIAs have been studied by several researchers, and

many of them adopted the Black-Scholes assumptions (Black and Scholes, 1973).

Tiong (2000) derived closed-form solutions for the three major product designs by

means of Esscher transforms.  Gerber and Shiu (2003) provided closed-form

formulas for lookback options and dynamic guarantees embedded in EIAs. Lee

(2003) proposed four designs of EIASs to increase participation rates and derived the

associated pricing formulas. Hardy (2004) presented a lattice method for valuing

ratchet EIAs. Extending the Black-Scholes assumption of constant risk-free rate to

stochastic interest rates, Lin and Tan (2003) determined the fair participation rates for



the three major designs of EIAs numerically under Vasicek (1977) short rate model.

Jaimungal (2004) assumed that the underlying index followed a geometric

Variance-Gamma process and developed closed-form expressions for prices of

point-to-point and ratchet EIAs.  Recently, Kijima and Wang (2007) adopted the

extended Vasicek model and derived the explicit pricing formulas for ratchet EI1As.

Our contribution to the literature in this dissertation is that we derive the

pricing formulas for ratchet EIAs with the quanto feature. A contract is a quanto or

cross-currency if the linked index is dominated in a different currency (e.g., Baxter

and Rennie, 1996; Hull, 2006). For instance, the contracts pay off in Australian

dollar and the linked index is S&P 500 which is dominated in US dollar. The quanto

feature is common in the derivatives market. Many variable (also called unit-linked)

products of life insurance and annuities also have this feature. Target customers

include the people interested in international diversification for their portfolios and

the people who live in the countries with less-developed capital markets and want to

invest in more-developed markets. Quanto ratchet EIAs are particularly popular in

areas such as Asia and Australia. ~ To incorporate the quanto feature, we add an

exchange rate model to the pricing framework. The results of this dissertation are

mainly closed-form solutions for various ratchet EIA products with the quanto feature.



2. PRODUCT SPECIFICATION AND VALUATION

2.1 Product Specification

The fundamental variable in pricing ratchet EIAs is the annual return calculated based
on the linked index. Let T be the maturity of an EIA contract and S(t) be the linked

index at t <T . Then the annual return of the linked index over the t" year will be:

t:&, t=12...T. (1)
S(t-1)

Insurers often take averages of the index returns over sub-periods of a year
when calculating the annual return to reduce the guarantee costs through dampening
the volatility of credited returns. We analyze two types of geometric averaging in
this dissertation. In the first case (which we refer as G1 hereafter), the annual return

over the t" year, R. c1. is taken as the geometric average of index sampled at an

interval of 1/m. That is,

1
m_ls(t—1+':f) "
R =| [[—— 1 @)
=0 S(t-1+—)
m

For the second case (referred as G2 hereafter), the annual return over the t" year is

denoted by R, ¢, as follows:

10



i S(t—1+rin) " 2
Rics = HW : (3)

i=1

The next step after calculating the annual return is to calculate the return to
be credited to the contract each year. The general formula is as follows:

R =1+ min(max(a(Rtﬁ —1), f),c), (4)
where R, denote the annual return over the t" year with or without geometric
averaging, o is the participation rate in the linked index, f denotes the minimum
guaranteed return rate (also called floor), and c represents the cap rate. The
participation rate is usually less than 100%, which is reasonable in the sense that
investors sacrifice some of the upside potential for the downside protection of the
minimum guarantee. When f = 0, the product provides a principal/premium
guarantee. The cap rate or ceiling rate c is the maximum rate that can be credited
each year. Placing a cap on the credited return is a direct way to reduce the product
cost. The product with no cap can be deemed as a special case of the capped product
with ¢ — 0.

The annual return can then be accumulated in two ways. For the compound

version of ratchet EIAs, the total return at maturity T is calculated as:

2 Note that equation (1) can be deemed as the special case of setting m =1 in equations (2) and (3) that
means no return averaging.
11



()
The version without compounding, which often referred as simple ratchet EIAs,
would pay out:
T T
R® =1+ (R -1)=1-T+ YR, (6)
t=1 t=1

at maturity T based on an initial premium of $1 at time 0.

2.2 Risk-Neutral Valuation

Since the contracts we considered are quantos, we add an exchange rate model to the
pricing framework of Black and Scholes. = The typical Black-Scholes assumptions
are commonly seen in the insurance literature, e.g., Hardy (2004), Lee (2003), Gerber
and Shiu (2003), and Tiong (2000). We assume that the linked index S(t) and
exchange rate C(t) follow geometric Brownian motions and that the interest rate r (for

local currency) and r; ( for foreign currency) are constants.  More specifically,

ZST?)) = py 0t + oz, (t),

dac(y) = ucdt + o [pdz, (t)+ pdz, (t)]

C(t) (7
dB—t) = rdt

B(t) ’

dD_t) =r,dt,

where z,(t), i =1,2 are independent Brownian motions, o is the volatility of the

linked-index, o Iis the volatility of the exchange rate, o is the correlation
12



coefficient of log(S(t)) and log(C(t)), p=41-p> is the orthogonal complement
of p. B(t) and D(t) denote the local and foreign money market accounts,
respectively.

We call the model defined in (7) the Black-Scholes quanto model (Baxter and
Rennie, 1996). To make the model more concrete, we may imagine the case that the
local currency is Australian dollar and the linked index is denominated in US dollar.
The model thus have three tradable assets in Australian dollar: the Australian dollar
cash bond B(t), the Australian dollar worth of the US-dollar denominated bond
C(t)D(t), and the Australian dollar worth of the linked index C(t)S(t). Based on the
Girsanov’s theorem and the martingale representation theorem (see, for example,
Bjork (2004)), there exists a unique measure Q under which both the discounted
processes C(t)D(t)/B(t) and C(t)S(t)/B(t) are martingales. The processes S(t)
and C(t) under Q can hence be written as:

W = (rf ~POsO¢ )dt +05dz,(t)
(8)
—t) = (r — I )dt +0¢ [pdzl (t)+ pdz, (t)]’
where Z,(t)and Z,(t) are independent standard Brownian motions under measure
Q.
According to the risk-neutral valuation principle (see, for example, Harrison

and Kreps (1979) and Harrison and Pliska (1981)), the no-arbitrage price of the EIA

13



contracts can be represented as:

*

V' =Ele R, ©
where E, [-]denotes the expectation operator under measure Q, and the asterisk may

be CR or SR.

14



3. PRICING FORMULAS

Under risk neutral measure Q, it is well known (e.g., Hull, 2006) that log(R, )are

2
. . . o
independent normal random variables with common mean r, — po o, —73 and

variance 052 . To omputeR", which is a function of ﬁt , we first rearrange equation
(4) as:

~

R, = (1-a)+amin(max(f,,R,).c,) (10)
=(l-a)+aX,
where f_=1+1f/a and c, =1+c/a. SetX, =min(max(f,,R,)c,). Thenitis

easy to see that X,'s are independent censored lognormal random variables with

censored values f, and c, .

3.1 Quanto Ratchet EIAs without Index Averaging

3.1.1 Simple Quanto Ratchet EIAs

Rewrite equation (6) using (10) and substituting into (9), we obtain

VSR _g T EQ [R’\s;lR]

11
—e T[l—aT +aTEy(X,)] ()
It then remains to compute Eq(X1). We first write
Eo(X,)=f,P(R < f, )+E[R;f, <R <c,]+c,P(R >¢,). (12)

Representing Ry as

15



exp[(l’f ~ PO O —CL /2)+ osN (O,l)], (13)

and letting
log f —
g, - ogf,—r; N 2pog + 0 , (14)
O'S 2
I —_
o 0gc, = Iy  2po. +o0y ’ (15)
O'S 2
we obtain
PR < f,)=P(N(01)<d,)=a(d,)
(16)
P(R,>c,)=P(N(01)>d,)=d(-d,)
and
Eo[Rii f, <R <c,]
et g )

22 \§ [(D(dz — Oy )_ (D(dl — 05 )]v

where ¢(-) and ®(-) are the density function and the cumulative distribution
function of standard normal random variable, respectively. Combining equations (16)
and (17), we get the explicit formula for E, (X, ):

EQ(XI): f q)(dl)"'caq)(_dz)"'erfipasac [(D(dz _O's)_q)(d1 — 05 )] (18)

a

With equations (11) and (18), the following proposition is straight-forward.

Proposition 1 The time-0 price of a T-year simple quanto ratchet EIA without index
averaging is:

VS = e - aT +aT[f,a(d,)+c,d(-d, )|+ aTe" " [0(d, - o, )- D(d, - o )]}
16



(19)

where d; and d; are defined as in equations (14) and (15).

3.1.2 Compound Quanto Ratchet EIAs
Following the same approach as in the previous section, equation (5) can be rewritten

as

VR _ T EQ [R’\CAR]

20
—e T[l-a+aEy (X, 0

The result below follows by substituting equation (18) into (20).

Proposition 2 The time-0 price of a T-year compound quanto ratchet EIA without

index averaging is:

T

VE e - ralf,od)+c,d(-d,)+e" 7 (d, - 0, )~ 0(d, - o, )]
(21)

where d; and d; are defined as in equations (14) and (15).

3.2 Quanto Ratchet EIAs with G1 Index Averaging

Under G1 index averaging, the annual return over the t year is given by equation (2).

It is easy to show that Iog(RLGl) are independent normal random variables with

2
mean /g, :}r/n(rf — PO, —0%) andol, =oZ/m. Set

17



Xier= min(max(fa,Rt]Gl), ca). (22)

Following similar derivations to those in section 3.1, we have

1,
He1t50G1

EQ (X l,Gl) = faq)(dl,Gl)+ Caq)(dz,el)+ e ? [q)(dZ,Gl - O'Gl)_ q)(dl,Gl —Og )]v (23)

where
log f, — 4
dl,Gl = & ) (24)
O¢1
logc -
dz,Gl — g a /uGl ] (25)
Og1

With some simple algebra, we can obtain similar pricing formulas for both
simple and ratchet quanto EIAs under G1. We summarize the results in the

following two propositions.

Proposition 3 The time-0 price of a T-year simple quanto ratchet EIA, with G1 index

averaging adopted, is given by:

SR T l1=oT +aT[fa(D(dl,Gl)+Caq)(_dZ,Gl)]
VGl =e

+ale

: (26)
[q)(dz,m - 0@1)_ q)(dl,Gl - 0'61)]

1,
ﬂGl+EO_G1

where d,s, and d,.; are defined as in equations (24) and (25).

Proposition 4 The time-0 price of a T-year compound quanto ratchet EIA, with G1

index averaging adopted, is given by:

152, !
VGC1R e {1_ o+ 0‘|: faq)(d1,61)+ Caq)(_ dZ,Gl)+ e/Gl ? ((D(dZ,Gl - O'Gl)_ (D(dl,Gl - 0@1))}} '

18



(27)

where d,s, and d,., are defined as in equations (24) and (25).

3.3 Quanto Ratchet EIAs with G2 Index Averaging

We first rewrite the annual return defined in equation (3) as:

. S(t—1+rin) "
Rig2 = HW

i=1

S(t-1) S(t-1) S(t-1)

S(t-1+Um) SE-1+2/m) () Tﬂ

(28)

- Hvi}m,
L i=1
k 2
Each Y; follows the lognormal distribution with mean L(rf — PO O —G—ZSJ and
m

: k ,
variance — o .
m
Since Y;’s are dependent variables and difficult to analyze with, we need to
make transformations. Set
Z = |Og(Y1),22 = IOg(Yz)_ IOg(Yl)v"'!Zm = IOg(Ym)_ IOQ(mel)'

It is easy to see that Z;’s are non-overlapping Brownian motion increments, and

2
thus are independent and normally distributed with mean i(rf — poso. _G_Zsj
m

and varianceiag . Taking log on both sides of equation (28), we have:
m

19



logR, ¢, =i2|og\(i =i[z1 +(Z,+Z,)+ -+ (2,42, ++ Z,)], (29)
’ m = m
It then follows that logR, s, are independent normal random variables with mean

(m+1)2m+1) ,

m+1 ol d vari )
= [ —posOc ——~ and varianceo g, =~———05.

Hga = om

6m?
Defining X 4, = min(max(fa, Rthz), ca) and then employing the same logics
in deriving the previous propositions, we obtain the pricing formulas for quanto EIA

contracts with G2 index averaging. The results are summarized below.

Proposition 5 The pricing formula for the simple quanto ratchet EIAs with G2 index

averaging scheme is:

1-aT +aT[f,®(d, 4, )+c,@(-d,e, )]
VE = 1 ’ (30

2
He2t-0G2

+ale 3 [(D(dZ,GZ _O-Gz)_q)(dl,GZ _O-GZ)]

Where
logf -
dlvc52 :M’ (31)
Og»
logc —
d,e, =M’ (32)
Og»
m+1 ol
Hey = om (rf ~POsO¢ _75} (33)
2 - (mriem+1) (34)

6m

Proposition 6 The pricing formula for the compound quanto ratchet EI1As with G2

index averaging scheme is:
20



1‘J'éz '
VGCzR e {1_ o+ 0{ faq)(dl,GZ )+ Ca(D(_ dz,Gz )+ e/GZ ? (q)(dz,ez LY )_ q)(dl,ez LY ))}}

, (35)

where d,g,, d,c,, us, and og, are defined as in equations (31) to (34).

21



4. NUMERICAL ILLUSTRATIONS

4.1 Valuation Examples

We consider the case that the domestic currency is Australian dollar and the linked
index is S&P 500, which is denominated in US dollar.  Using the monthly data from
January 2000 to June 2010, we estimate the volatility and correlation parameters as
follows: o, =16.47% (the volatility of S&P 500) , o, = 13.84% (the volatility of
the exchange rate USD/AUS), p =-0.52 (the correlation coefficient of log(S(t))
and log(C(t)))

A typical contract usually has maturity 3 to 7 years. We thus select T = 5 years. We set
annual ceiling rate ¢ = 30%, annual floor rate f = 0%, participate rate a = 100%. We
use 5-year treasury rates of June 30, 2010 to proxy the risk free rates. Therefore, the
5-year risk free rate of Australian dollar r is set to 4.78% and the 5-year risk free rate
of US dollar ry is set to 1.83%. We also set the number of averaging in a year m = 4
(when applicable). Above combination of model parameters and contract features is

our benchmark example.
4.2 Parameter Analyses
In this section, we use the previous benchmark example to illustrate how various

22



contract features and model parameters may affect the value of the contract. For each

set of parameters we examine six product specifications:

SR: Simple version of Ratchet EIAs

CR: Compound version of ratchet EIAs

SR G1: Simple version of Ratchet EIAs with G1 averaging scheme

CR G1: Compound version of ratchet EIAs with G1 averaging scheme

SR G2: Simple version of Ratchet EIAs with G2 averaging scheme

CR G2: Compound version of ratchet EIAs with G2 averaging scheme

4.2.1 Impact of return cap

The value of the contract with various return cap shows in Figure 1.

The

contract value increases with the return cap, as expected, because capping the return

that can be credited to the contract truncates the upside potential. The value increases

at a diminishing rate (i.e., all curves are concave).

This is reasonable because the

probability of hitting the upper bound decreases at an increasing rate when the upper

bound rises as long as the probability density of positive returns is a decreasing

function of returns. We further observe that the impact of return cap is the most

significant when there is no return averaging and is the least significant when returns

are averaged by the first type of scheme.

The underlying reason is that the first type

23



of averaging scheme has the most significant averaging effect. It averages over
non-overlapping sub-periods while the second type averages on cumulative returns of
sub-periods. The stronger return averaging effect decreases the probability of hitting
the upper bound more and thus reduces the impact of return cap.

The impact of return cap is more significant when returns are accumulated
compoundedly than the corresponding case when returns are accumulated additively
as we see from Figure 1. This is also reasonable because the compound version
generates higher returns in our current parameter settings and thus is bounded more

by return caps.

o=100%, f=0%, r=4.78%, re= 1.83%, o = 16.47%, o, = 13.84%, p=-0.52, m=4
120 T T T T T

—+—38R
—<&—CR
-—--SR G1
-—%—-CR G1
g S8R G2
oy CR G2

Price of Ratchet EIA

| 1 | | 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
c: ceiling rate

Figure 1: Impact of Return Cap ¢
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4.2.2 Impact of Return Floor Rate

The value of the contract increases with the return floor as Figure 2 shows. The
impact of return floor is more significant when returns are accumulated
compoundedly than the corresponding case when returns are accumulated additively.

a=100%, c = 30%, r=4.78%, 1 = 1.83%, o,=16.47%, o_=13.84%, p=-0.52, m=4

150 T T T T T

140|

130}
o SR
L —t—
5 120] R
$ -~ --SR G
o ~ -~ CR G1
o 110} B SR G2
8 4 CRG2
o

100}

0}

BO | 1 | | 1 | 1

2006 004 -002 0 002 004 006 008 01

£ floor rate
Figure 2: Impact of return floor rate f
We observe that return floor has the least impact on the contract without return
averaging and has the greatest impact on the contract with the G1 averaging, given the
same way of return accumulation. More specifically, the percentage change of the

contract value given a change in the return floor is the smallest when there is no return

25



averaging and is the largest when returns are averaged by the first type of scheme.
The underlying reason is that the value contributed by the return volatility decreases
with the floor rate. The reduction in the contract value due to the volatility
dampening of return averaging thus decreases with the floor rate as well. Therefore
we observe that the value increase the fastest/slowest with the floor rate for the

contract with the strongest/weakest return averaging scheme.

4.2.3 Impact of Participation Rate

The value of the contract increases with the participation rate as Figure 3 shows. It
is interesting to seeing that the contract value is nearly linear function of participation
rate for 0.5 < a < 1.2. Also, the impact of participation rate is more significant
when returns are accumulated compoundedly than the corresponding case when
returns are accumulated additively. Besides, the participation has the greatest impact
on the contract with no return averaging but has the least impact on the contract with
the G1 averaging scheme. The rationale is that the participating rate
amplifies/condenses the effect of return averaging since it is the multiplier to the
annual return in equation (4). The reduction in the contract value due to return

averaging thus increases with the participating rate.

26



¢ =30%, f=0%, r=478%,1.=183%, o.=16.47%, o_=13.84%, p=-052 m=4
120 T T T T T

115

110

—+— S8R
—&—CR
-—k—-SR G1
-—>*--CR G1
4 o &R G2
G CR G2

105

100

Price of Ratchet EIA

95

90

| | | | |
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
w. participation rate

85 1 1
0.5

Figure 3: The impact of Participation rate

4.2.4 Impact of Return Averaging

Figure 4 shows that the contract value decreases with the frequency of averaging.
The impact of return averaging can be rather significant. The frequency of return
averaging would decrease the contract value because higher frequencies produce
stronger averaging effects and reduce the volatilities of annual returns. The reduced
volatilities decrease the value of the options embedded in the ratchet EIA products.
The impact of return averaging is more significant for the compound version than for

the simple version.
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Figure 4: Impact of Return Averaging

The averaging frequency has more impact on the G1 averaging scheme than on

G2. Remember that G1 averages returns over non-overlapping sub-periods while G2

averages on cumulative returns of sub-periods. The marginal effect of increasing the

number of sub-periods is thus larger for G1.

4.2.5 Impact of the Volatility of Linked Index

The value of the contract increases with the volatility of the linked index as Figure

5 shows. The impact of with the volatility of the linked index is also more significant
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when returns are accumulated compoundedly than the corresponding case when
returns are accumulated additively. When the volatility of the linked index is greater
than 30%, the increase in contract value of SR and CR becomes very minor. This is

because the annual return is capped at 30%.
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Figure 5: Impact of the volatility of the linked index

4.2.6 Impact of the Volatility of Exchange Rate
The value of the contract increases with the volatility of exchange rate as Figure 6

shows. It is interesting to seeing that the contract value is nearly linear function of the
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volatility of exchange rate. The impact of the volatility of exchange has no big

difference for CR and SR versions.
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Figure 6: Impact of the volatility of exchange rate

4.2.7 Impact of the correlation coefficient of log(S(t)) and
log(C(t))
The value of the contract decrease with the correlation coefficient of log(S(t)) and
log(C(t)) as Figure 7 shows. It is interesting to noting that the contract value is nearly

linear function of the correlation coefficient of log(S(t)) and log(C(t)). The impact of
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p has no big difference for

CR and SR versions. Please note that p = 0 is

corresponding to the “non”-quanto case. From Figure 7, it is clear that the contacts are

mispriced if the quanto feature has been ignored.
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Figure 7: Impact of the correlation coefficient of log(S(t)) and log(C(t))

4.2.8 Impact of the Domestic Risk-Free Rate

The value of the contract decreases with the domestic risk-free rate as Figure 8 shows,

because the present value of the cash flow at maturity is a decreasing function of the

domestic risk-free rate. The curves show little convexity since the contract maturity is
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merely 5 years. The impacts of r on the contract values look to be similar across

return accumulation methods and return averaging schemes.
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Figure 8: Impact of the domestic risk free rate
4.2.9 Impact of the Foreign Risk-Free Rate
The value of the contract increases with the foreign risk-free rate at a moderately
increasing speed as Figure 9 shows. This effect is the most appearing when there is no
return averaging and is the least significant with the G1 return averaging. Figure 9
further shows that the differences in the contract values between the compound and

simple versions increase with the foreign risk-free rate.
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Figure 9: Impact of the foreign risk free rate
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Equity-indexed annuities are one innovative product brought into the insurance

market recently and the sales have been growing rapidly. Among several product

designs of EIlAs, ratchet EIAs are the most popular probably because returns are

credited periodically with a guaranteed minimum and the account value never

decreases once the return is credited. Pricing ratchet EIAs is, however, challenging
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due to the complex contract features and payoff structures. For instance, Hardy

(2004) claimed that the value of the simple version of ratchet EIAs is not analytically

tractable. Kijima and Wong (2007) could not obtain closed-form solutions for the

compound version with a return cap either.

Our major contribution in this dissertation is that we derive the pricing formulas

for various ratchet EIA contracts under the Black-Scholes assumptions. Our

formulas cover both simple and compound versions of ratchet EIAs. They may have

a return cap and can adopt either no return averaging or two types of averaging

schemes. The broader coverage of our closed-form solutions make the analyses of

various contract features easier than the numerical methods provided by the literature.

Our pricing formulas will be a useful tool for actuaries to design ratchet EIA contracts

in terms of controlling guarantee costs and market variable risks such as interest rate

level and linked-index’s volatility. - The numerical analyses using these formulas can

further assist actuaries to evaluate how contract features such as return cap, return

averaging, and return accumulation affect the contract value. Our numerical results

show that the value of the contract increases with the return cap, decreases with the

frequency of averaging, and is higher for the compound version. Furthermore, the

results demonstrate that the impacts of contract features are affected by each other.

The impact of return cap is the most significant when returns are accumulated
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compoundedly and when there is no return averaging. The impact of return

averaging is reduced significantly by return cap, and the impact of return

accumulation is reduced by both return cap and return averaging. Actuaries

therefore should always take into account contract features simultaneously when

designing and managing ratchet EIA products.

Our formulas will also be useful in hedging the risks of the ratchet EIA products.

Insurers can hedge the risks introduced by embedded options using a passive

approach or the dynamic-hedging approach (Boyle and Hardy, 1997). Under the

passive method the insurance company offsets the liability associated with the

embedded option by purchasing appropriate options in an exchange and/or from

another financial institution. For instance, the insurer may purchases call options

with the same underlying stock indexes in an exchange to hedge the embedded call

options in the ratchet EIA products. These exchange-traded options have short

maturities only, but the insurer may roll them over to provide longer-term protections.

If the insurer is concerned with the basis risk resulted from the complex contract

features of the ratchet EIA products (e.g., return averaging), it may purchase average

rate options in an over-the-counter market. It may even arrange an equity swap with

an investment bank.  Our formulas will help insurers to assess the due prices/costs of

the above hedging arrangements.
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Insurers can employ our formulas in the dynamic hedging as well.  Under the

dynamic-hedging approach, the assets of the portfolio are adjusted on an ongoing

basis so that the fund at maturity provides the minimum guaranteed amount when the

guarantee is operative and the value of the assets otherwise. The insurer can employ

our formulas to derive the compositions of the replicating portfolios that will be

adjusted dynamically to reflect the changing indexes and time to maturity. Due to

the existence of transactions costs, the insurer has to adjust the replicating portfolios

discretely rather than continuously and will incur hedging errors. It therefore faces

the tradeoff between discrete hedging errors and transaction costs. Hardy (2003;

chapter 8) provides detailed descriptions and assessments on this dynamic-hedging

approach. Her results, in general, showed that the pricing formulas derived under

simple Black-Scholes assumptions can have good hedging capacity for more general

assumptions about linked-index and interest rate, which provide another justification

for using the B-S framework.
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