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Introduction 

Convertible bonds, spanning the dimensions from common stocks on the one hand to 

straight bonds on the other, are one of the most popular hybrid financing instruments. 

Most convertible bonds have call provisions, making the valuation and the 

determination of the optimal strategies for call and conversion more complicated. 

Similar to ordinary bondholders, investors of convertible bonds are entitled to receive 

coupon payments and principal payments, and thus the default risk of the bond issuer 

is also essential to the valuation of convertible bonds. 

   There are two approaches to pricing financial instruments subject to the default 

risk of the issuer in the literatures: the reduced-form approach and the structural 

approach. It is difficult to distinguish the hazard rate and the loss on default in the 

reduced-form model. On the other hand, the structural approach, which has a clear 

link between economic fundamentals and firm’s defaults, helps to understand losses 

on default. Owing to poor fitting results on prices of convertible bonds by 

reduced-form models, Rogers (1999) has ever noted that it is hard to deal realistically 

with convertible bonds in the reduced-form model: “The existence of convertible 

bonds really forces one to consider firm value – so maybe we should go for a 

structural approach anyway?” Although a structural model is heavy going, it definitely 

brings us some useful insights of corporate financing. 

The pioneered work of Merton (1974) provides a structural model and explains 

how the risky debt can be viewed as a European contingent claim on the value of 

firm’s assets. He further derives the closed-form valuation by using the Black-Scholes 

option pricing formula. Subsequently, Black and Cox (1976) first utilize the 

first-passage-time approach to extend Merton’s model and consider the possibility that 

the bond issuer may default prior to the maturity. Leland (1994) further takes the tax 
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benefits and the bankruptcy costs into account, which are viewed as the perpetual 

contingent claims on the unlevered asset value of a firm. By the pricing method of a 

perpetual American option, he provides the closed-form pricing formulas of these 

contingent claims, and furthermore, he uses the smooth-pasting condition to 

endogenize the bankruptcy strategy. Leland and Toft (1996), based on Leland (1994), 

use a (single) barrier option approach and construct a stationary debt structure1 to 

price a finite-maturity coupon debt with consideration of endogenous bankruptcy. 

As for the valuation of convertible bonds by a structural model, Ingersoll (1977a) 

first uses the Black-Scholes methodology and derives the closed-form pricing formula 

with some simplifying assumptions. In addition, he obtains the optimal call trigger 

which is equal to the call price multiplied by a conversion ratio, and shows that the 

conversion will occur only either at the time of call or at the maturity of the bond in a 

perfect market. Meanwhile, Brenann and Schwartz (1977) price a more general 

convertible bond by the finite difference method where they solve a partial differential 

equation with more realistic boundary conditions. Subsequently, Brenann and 

Schwartz (1980) allow for stochastic interest rates and take consideration of the senior 

debt in the issuer’s capital structure. Their numerical results suggest, in a striking 

manner, that for a reasonable range of interest rates, the errors from the certain 

interest rate model are likely to be small. For practical purposes, therefore, it may be 

preferable to use a simple model with the constant interest rate for valuing convertible 

bonds. Nyborg (1996) provides an excellent survey on the valuation of convertible 

bonds and reviews the reasons why firms issue convertible bonds. All of the works 

above focus on the case with a positive net-worth covenant in which bankruptcy is 

triggered when the firm’s asset value falls to the total outstanding debt’s principal 

value. Recently, Sarkar (2001) and Sarkar and Hong (2004), based on the endogenous 
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bankruptcy framework of Leland (1994), price a callable corporate bond and analyze 

the call probability as well as the effective duration with consideration of tax benefits 

and bankruptcy costs. In addition, Sarkar (2003) explores early and late calls of 

convertible bonds still under the perpetual maturity setting of Leland (1994), which 

seems unreasonable. Moreover, Sarkar (2003) only considers the possibility of forced 

conversion when the call is triggered but neglects the possibility of voluntary 

conversion by bondholders. 

   This paper provides a simple but complete structural model to price a callable 

convertible bond with finite maturity using the pricing technique of double-barrier 

options, where the optimal strategies for call, voluntary conversion, and bankruptcy 

are endogenously determined by shareholders and bondholders. Our model not only 

takes tax benefits, bankruptcy costs, and bond maturities into account, but also 

considers the possibilities that the call, the voluntary conversion, and the bankruptcy 

may occur prior to the maturity of the bond. In addition, our numerical results predict 

that when the call redemption, the forced conversion, the voluntary conversion, and 

the bankruptcy of a callable convertible bond may happen. The empirical literature 

findings of late calls associated with dividend payments and tax benefits are 

confirmed in our numerical analyses, and furthermore, the hypothesis that 

shorter-term debts and convertible debts can be used to reduce the asset substitution 

agency problem is also numerically validated by our model. 

   The remainder of this paper is organized as follows. In Section 1, we set up the 

modeling framework. Section 2 is devoted to the derivation of the analytic valuation 

of a callable convertible bond. Next, we present some numerical analyses of the 

optimal strategies for call, voluntary conversion and bankruptcy, and of callable 

convertible bond prices in Section 3. In Section 4, the asset substitution problem 
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associated with convertible bonds is also examined. Finally, Section 5 summarizes the 

article and makes concluding remarks. 

 

1. Valuation Framework 

Consider a bond issuer (or an objective firm) where the callable convertible bond is 

the only senior issue, which continuously pays a constant coupon flow, C , with the 

finite time to maturity, T , and the par value, P . The other claim of the firm is the 

common share. Let ( )V t  designate the unlevered asset value of the bond issuer at 

time t . The dynamics of ( )V t  on the risk-neutral filtered probability space are given 

by 

( )( ) ( ) ( ) ( )QdV t V t r q dt dW tσ= − + ,                 (1) 

where r  denotes the constant risk-free interest rate,2 q  is the constant payout ratio 

of the issuer, σ  is the constant return volatility, and QW  is a risk-neutral Wiener 

process. Owing to Harrison and Kreps (1979) and Harrison and Pliska (1981), we 

start with risk-neutrality and bypass the original rate of return of the unlevered asset. 

Here we implicitly assume that the unlevered asset is a continuously tradable asset in 

a frictionless market, and there is a risk-free asset earning the risk-free interest rate 

without any restriction.  

The unlevered asset value of the bond issuer is assumed to be independent of the 

capital structure of the firm. This implies the validity of Modigliani-Miller Theorem, 

which is a standard assumption in the structural models, such as Leland and Toft 

(1996). Moreover, we assume there is no incentive problem between the management 

and the shareholders of the objective firm. In other words, our model implies that the 

intention of the management is always consistent with that of the shareholders, which 
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is to maximize the common shareholders’ wealth subject to the constraints placed 

upon the firm. 

   Next, we are going to characterize the callable convertible bond of the objective 

firm. As the title indicates, there are only call and conversion provisions involved in 

the callable convertible bond where no other exotic provisions prevail. Most 

convertible bonds are also puttable bonds which give bondholders rights to sell their 

bonds back to the issuer. This flexibility, however, plays a minor role in the valuation, 

and we shall ignore it for simplicity. As usual, if bondholders convert convertible 

bonds into common shares, then they will receive a fraction γ  of the unlevered asset 

value of the issuer. One advantage of the structural model for valuing convertible 

bonds is that γ  captures the dilution effect of the conversion, which represents the 

ratio between the total converted shares and the total outstanding shares after 

conversion. For details, we refer Schonbucher  (2003, P.266). Here we implicitly 

assume the conversion in our model is “block conversion”, that is, all the bondholders 

will convert the convertible bonds into the common shares at the same time. 

Constantinides (1984) shows that there is at least one Nash-equilibrium in various 

conversion strategies and in addition, the highest value of the convertible bond in 

these Nash-equilibria coincides with the bond value in the block conversion case. 

If the issuer of the callable convertible bonds calls back all outstanding callable 

convertible bonds at the same time, then all the bondholders have to immediately 

choose either to convert callable convertible bonds into common shares, or to receive 

the pre-specified call price (the redemption value), (1 )Pβ+ , where Pβ  is the call 

premium of the callable convertible bonds. Here we ignore the transaction costs 

associated with the processes of the call and the conversion, and we also neglect the 

call notice period and the conversion protected period in our framework. 
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   At the initial time, assumed to be time zero for simplicity, we suppose that the 

upper constant call barrier, 0
CallV , and the upper constant conversion barrier, 0

ConV , are 

both greater than the initial unlevered asset value of the bond issuer, (0)V . As soon 

as the unlevered asset value of the bond issuer goes up and touches either 0
CallV  or 

0
ConV , then either the call of the bond issuer or the voluntary conversion of the 

bondholders is triggered. Therefore, two first passage times can be further defined as 

( )0 0inf 0 : ( )Call Cont V t Vτ ≡ > ≥  and ( )0 0inf 0 : ( )Con Cont V t Vτ ≡ > ≥ , where 0
Callτ  and 

0
Conτ  are the time that the bond issuer decides to call back the bonds, and the time that 

the bondholders determine to voluntarily convert the bonds into the common shares, 

respectively.  

In addition to the results of being called or being voluntarily converted, there are 

still two other possible outcomes for callable convertible bonds. One is that the bond 

issuer declares bankruptcy prior to the time of the call, the time of the voluntary 

conversion, and the maturity of the bond; the other one is that callable convertible 

bonds mature and none of the call, the voluntary conversion and the bankruptcy 

occurs. Subsequently, another lower constant bankruptcy barrier is defined as 0
BV , 

which is less than (0)V . As soon as the unlevered asset value of the bond issuer goes 

down and touches 0
BV , the bankruptcy of the bond issuer is triggered. Once the bond 

issuer declares bankruptcy, the bondholders receive the recovery value, 0(1 ) BVα− , at 

the time of default, where α , between 0  and 1, is the ratio of bankruptcy costs or 

restructuring costs. Again, another first passage time can be denoted as 

( )0 0inf 0 : ( )B Bt V t Vτ ≡ > ≤ , where 0
Bτ  is the time that the bond issuer announces 

bankruptcy. In the next section, we will endogenously determine the optimal 
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strategies for call, voluntary conversion, and bankruptcy by taking the desired 

objectives of the bond issuer and the bondholders into consideration. 

 

2. Pricing Callable Convertible Bonds with Default Risk 

Since the bond issuer can make decisions when to call and whether to declare 

bankruptcy, and the bondholders have the flexibility when to voluntarily convert the 

bond prior to maturity, the complexity for pricing a callable convertible bond has been 

considerably amplified. In this section we first construct a structural model to price a 

non-callable convertible bond, and then decide the optimal voluntary conversion 

strategy for the bondholders and the optimal bankruptcy strategy for the bond issuer. 

Using the same methodology, we subsequently derive the analytic valuation of a 

call-forcing convertible bond and determine the optimal call and bankruptcy strategies 

for the bond issuer. Based on the assumption that there is no interaction between the 

optimal voluntary conversion strategy and the optimal call policy, we ultimately 

obtain the analytic valuation of a callable convertible bond subject to the default risk 

of the issuer. 

2.1. Pricing a non-callable convertible bond with default risk 

For a non-callable convertible bond, the bond issuer can decide when to go bankrupt 

and the bondholders can determine when to voluntarily convert the bonds into 

common shares. Leland and Toft (1996) use a (single) barrier option approach to 

valuing a risky corporate coupon bond, motivating us to use a double-barrier option 

approach to pricing a risky non-callable convertible bond. Similar to Leland and Toft 

(1996), the initial lower barrier, 0
1BV , represents the bankruptcy trigger of the issuer. 

Further we denote the initial upper barrier, 0
ConV , as the voluntary conversion trigger 

of the bondholders. We initially treat these two barriers as two exogenous constants, 
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which will be endogenously determined by the Nash-equilibrium argument later. 

   Under our risk-neutral framework, the initial value of a non-callable convertible 

bond, (0)NCCB , can be written by 

{ } { }
00

1
0 0 0 0 0 0

1 1 1

0 0
1, ,

(0) E 1 (1 ) E 1ConB

B Con B Con B Con

rrQ Q
B ConT T

NCCB e V e Vττ
τ τ τ τ τ τ

α γ−−
< ≤ < ≤

   = − +      
 

          { }

0 0
1

0 0
1min( , )

0

E 1 E
B Con

Con B

T
Q rT Q rt

T
e P Ce dt

τ τ

τ τ

∧ ∧
− −

>

  + +       
∫ ,                 (2) 

where {A}1  denotes the indicator function with value 1 if event A occurs and with 

value zero otherwise, min( , )t s t s∧ ≡ , and ( )0 0
1 1inf 0 : ( )B Bt V t Vτ ≡ > ≤  and 0

Conτ ≡  

( )0inf 0 : ( ) Cont V t V> ≥  stand for the time of the bankruptcy of the bond issuer and the 

time of the voluntary conversion of the bondholders, respectively. For the right hand 

side of Equation (2), the first term denotes the discounted recovery value of a 

non-callable convertible bond when the bankruptcy occurs prior to the voluntary 

conversion and to the maturity of the bond. Next, the second term represents the 

discounted voluntary conversion value when the block conversion happens before the 

bankruptcy and the maturity. The third term shows the discounted par value when 

there is no occurrence of the bankruptcy and the voluntary conversion prior to the 

maturity, and the last term designates the discounted value of the cumulative coupon 

payments which may be truncated either by the voluntary conversion or by the 

bankruptcy.  

We can then rearrange Equation (2) as follows: 

{ }
0

1
0 0 0

1 1

0
1,

(0) E 1 (1 )B

B Con B

rQ
BT

C CNCCB e V
r r

τ
τ τ τ

α−
< ≤

  = + − −    
 

( ){ } { }
0

0 0 00 0
11

0
,min ,

E 1 E 1Con

Con B ConCon B

rQ rT Q
ConTT

C Ce P e V
r r

τ
τ τ ττ τ

γ−−
< ≤>

      + − + −            
. (3) 
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Since 0
1BV  and 0

ConV  are two constants at the initial time, Equation (3) can be further 

simplified as follows: 

0 0
1

0 0
1(0) + (1 )

B Con
B T Con

C C C CNCCB V G P G V G
r r r rτ τ

α γ     = − − + − + −     
     

,          (4) 

where { }
0
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1 1 1,
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T
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τ τ τ τ
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, ( ){ }0 0

1min ,
E 1

Con B
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−

>
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G
τ

≡  

{ }
0

0 0 0
1 ,

E 1Con

Con B Con

rQ
T

e τ
τ τ τ

−
< ≤

 
  

. Here { }0 0 0
1 1,

E 1
B Con B

Q
Tτ τ τ< ≤

 
  

 is the risk-neutral probability of 

the bankruptcy which happens before the voluntary conversion and the maturity of the 

bond; similarly, { }0 0 0
1 ,

E 1
Con B Con

Q
Tτ τ τ< ≤

 
  

 is also the risk-neutral probability of the 

voluntary conversion which occurs prior to the time of the bankruptcy and the 

maturity of the bond; ( ){ }0 0
1min ,

E 1
Con B

Q
Tτ τ >

 
  

 can be regarded as the risk-neutral 

probability of the event that the bond survives throughout its remaining life. 

   In what follows, we take the initial tax benefits of future coupon payments, 

(0)TB , and the initial value of potential bankruptcy costs, (0)BC , as two contingent 

claims upon the unlevered asset value of the firm. By risk-neutral valuation method, 

the cumulative discounted tax benefits at the initial time can be represented by 

( )
0 0

1
0 0

1( )

0

(0) E E 1
B Con

B Con

T
r TQ rt Q CTB Ce dt e

r

τ τ
τ τττ

∧ ∧
− ∧ ∧−

   = = −      
∫ 0 0

1
1

B Con
T

C G G G
r τ τ

τ  = − − −  ,               

(5) 

where τ  is the constant corporate tax rate. In view of Equation (5), the tax benefits 

are cumulated up from the initial time to the maturity of the bond, which may be 

truncated either by the bankruptcy or by the voluntary conversion. Similarly, the 

discounted bankruptcy costs at the initial time can be written as 
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( ) { } { }
0 0

1 1
00 0

11 1

0 0 0
1 1 10 0

(0) E 1 E 1B B

BB B

r rQ Q
B B BT T

BC e V V e V Fτ τ
ττ τ
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,      (6) 

where { }
0

1
0 0

1 10
E 1B

B B

rQ
T

F e τ
τ τ

−
< ≤

 ≡   
. In particular, { }0

10
E 1

B

Q
Tτ< ≤

 
  

 is the risk-neutral 

probability that the bond issuer declares bankruptcy before the maturity. Although the 

bankruptcy costs seem to be irrelevant to the voluntary conversion strategy, we will 

show later, in fact, that the optimal bankruptcy strategy and the optimal voluntary 

conversion strategy are mutually interacted. 

   Consequently, the initial total firm value, (0)NCCBF , is equal to the initial 

unlevered asset value plus the initial tax benefits and less the initial value of the 

potential bankruptcy costs, i.e., (0) (0) (0) (0)NCCBF V TB BC= + − . Since the 

accounting identity of the balance sheet states that the total firm value must equal to 

the sum of the equity value and the liability value, the initial equity value of the bond 

issuer, (0)NCCBE , must equal to the initial total firm value minus the initial value of 

the non-callable convertible bond, i.e., (0)NCCBE = (0)NCCBF (0)NCCB− . In order to 

complete the analytic pricing formulas for (0)NCCB , (0)NCCBF  and (0)NCCBE , the 

explicit expressions for 0
1B

G
τ

, 0
Con

G
τ

, TG , and 0
1B

F
τ

 are provided in Appendix. 

   To endogenize the optimal voluntary conversion policy, *
ConV , and the optimal 

bankruptcy strategy, *
1BV , we first apply the following smooth-pasting conditions to 

determine the initial constant voluntary conversion trigger, *,0
ConV , and the initial 

constant bankruptcy trigger, *,0
1BV . 

*,0
1

*,0
1

(0)
*,0
1(0)

(0) |(0) 0
(0)

B

B

NCCB V VNCCB

BV V

EE
V V

=

=

∂∂
= =

∂ ∂
,               (7) 
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*,0

*,0

(0)
*,0

(0)

(0) |(0)
(0)

Con

Con

V V

ConV V

NCCBNCCB
V V

γ=

=

∂∂
= =

∂ ∂
.              (8) 

Equation (7) equates the partial derivative of (0)NCCBE  with respect to (0)V  

evaluated at *,0
1BV  and the partial derivative of (0)NCCBE  evaluated at *,0

1BV  with 

respect to *,0
1BV , which equals to zero. Equation (8) equates the partial derivative of 

(0)NCCB  with respect to (0)V  evaluated at *,0
ConV  and the partial derivative of 

(0)NCCB  evaluated at *,0
ConV  with respect to *,0

ConV , which equals to γ . These two 

conditions represent that at the initial time, the shareholders choose *,0
1BV  to 

maximize the equity value, and the bondholders determine *,0
ConV  to maximize the 

value of the non-callable convertible bond, respectively.3 Furthermore, the 

Nash-equilibrium argument is employed to endogenously determine the optimal 

strategies for the voluntary conversion and the bankruptcy. Given any *,0
ConV , the 

shareholders determine the optimal bankruptcy strategy as a function of *,0
ConV , denoted 

as ( )*,0 *,0
1B ConV V ; on the other hand, given any *,0

1BV , the bondholders also decide the 

optimal conversion strategy as a function of *,0
1BV , denoted as ( )*,0 *,0

1Con BV V . Under the 

assumption that both the shareholders and the bondholders are fully informed, the 

optimal (Nash-equilibrium) strategies for the voluntary conversion and the bankruptcy 

can be obtained by jointly solving Equations (7) and (8) numerically. 

In the previous analyses, we have assumed that both the voluntary conversion 

trigger and the bankruptcy trigger are constants, which is used to obtain the desired 

densities and then derive the analytic formula of the non-callable convertible bond. To 

be consistent with this assumption, we further suppose that all the bondholders and 

the bond issuer initially regard the optimal voluntary conversion strategy and the 
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optimal bankruptcy strategy, *,0
ConV  and *,0

1BV , as two constants; at the next 

instantaneous time, the bondholders and the bond issuer, who will renew the optimal 

voluntary conversion and bankruptcy strategies, again take these optimal strategies as 

the constants that will not vary with time. Repeatedly, the optimal strategies will be 

updated at every instantaneous time before the maturity given that both the voluntary 

conversion and the bankruptcy do not occur. After collecting all the optimal strategies, 

we will observe that these optimal strategies are exactly the solutions of Equations (7) 

and (8), denoted as * (0)ConV  and *
1(0)BV , which are allowed to change with the time 

to maturity. This is due to the property of the smooth-pasting conditions, where the 

optimal strategies are independent of the unlevered asset value, that is, they do not 

involve any uncertainty and will only vary with the time to maturity. Finally, putting 

0 * (0)Con ConV V=  and 0 *
1 1(0)B BV V=  back into Equation (4), we finish the derivation of 

the analytic valuation of a non-callable convertible bond subject to the issuer’s default 

risk. 

2.2. Pricing a call-forcing convertible bond with default risk 

Consider a call-forcing convertible bond, where the bond issuer can decide when to 

go bankrupt and when to call the bonds back, and the bondholders, however, can not 

convert voluntarily. Once the bond issuer announces to call the bonds, the 

bondholders can, at the same time, choose either to accept and then receive the 

redemption price, or to involuntarily convert the bond into the common shares. The 

risk-neutral pricing method implies that the initial value of a call-forcing convertible 

bond, (0)CFCB , can be written by 

{ } ( ){ }
0

2
0 0 0 0 0

2 2 2

0
2, min ,

(0) E 1 (1 ) E 1B

B Call B Call B

rQ Q rT
BT T

CFCB e V e Pτ
τ τ τ τ τ

α− −
< ≤ >

  = − +      
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{ } ( )
0 0

2
0

0 0 0
2

0
,

0

E 1 max , (1 ) E
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∫ , (9) 

where ( )0 0
2 2inf 0 : ( )B Bt V t Vτ ≡ > ≤  and ( )0 0inf 0 : ( )Call Callt V t Vτ ≡ > ≥  stand for the 

time of the bankruptcy and the time of the call, respectively. For the right hand side of 

Equation (9), the first term denotes the discounted recovery value of a call-forcing 

convertible bond when the bankruptcy occurs prior to the time of the call and the 

maturity of the bond. The second term represents the discounted par value when there 

are no call and bankruptcy before the maturity. Next, the third term is the discounted 

payoff at the time of the call, where the payoff is equal to the maximum amount 

between the forced conversion value, 0
CallVγ , and the redemption value of the call, 

(1 )Pβ+ . The last term is the discounted value of the cumulative coupon payments 

which may be truncated either by the call or by the bankruptcy of the bond issuer. 

Since 0
2BV  and 0

CallV  are assumed to be two constants initially, we can also 

simplify Equation (9) as follows: 
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. Similar to the case of the non-callable convertible bond, 

various risk-neutral probabilities can be calculated in this case. The total firm value in 

the call-forcing convertible bond case can also be expressed as 

{ }0 0 0 00
2 2

0
2(1 )

(0) (0) 1 1
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. For the right hand 

side of Equation (11), the first term is the initial unlevered asset value, and the second 

term represents the cumulative discounted tax benefits of the coupon payments which 

may be truncated either by the call or by the bankruptcy. Next, the third term stands 

for the additional discounted tax benefits of the call premium when the bond is 

redeemed for cash. The last term expresses the corresponding discounted bankruptcy 

costs or restructuring costs. Once again, according to the accounting identity of the 

balance sheet, the initial equity value in this case, (0)CFCBE , is equal to the total firm 

value minus the value of the call-forcing convertible bond. Moreover, the analytic 

expressions for 0
2B

H
τ

, TH , 0
Call

H
τ

, 0
2B

F
τ

, and 0
Call

F
τ

 are also given in Appendix. 

   We are now going to determine the optimal call and bankruptcy strategies for the 

bond issuer who initially chooses these optimal policies by the corresponding smooth- 

pasting conditions given below. 
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Similar to Equation (7), Equation (12) equates the partial derivative of (0)CFCBE  

with respect to (0)V  evaluated at *,0
2BV  and the partial derivative of (0)CFCBE  

evaluated at *,0
2BV  with respect to *,0

2BV , which equals to zero; Equation (13) equates 

the partial derivative of (0)CFCBE  with respect to (0)V  evaluated at *,0
CallV  and the 

partial derivative of (0)CFCBE  evaluated at *,0
CallV  with respect to *,0

CallV , which is 

either equal to (1 )γ−  when the forced conversion occurs, or equal to 1 when the 
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call redemption happens.4 Furthermore, Equations (12) and (13) represent that the 

shareholders make decisions on the optimal call and bankruptcy strategies to 

maximize the equity value. As noted in Sarkar (2003), the shareholders must choose 

the optimal call policy to maximize the equity value rather than to minimize the value 

of convertible bonds (such as Ingersoll (1977a) and Brennan and Schwartz (1977)). 

These two objectives are equivalent in a perfect capital market, but in a market with 

frictions minimizing the convertible bond value does not imply maximizing the 

equity value. 

   Due to the same inference from the previous section, jointly solving * (0)CallV  and 

*
2 (0)BV  from Equations (12) and (13) and then substituting them back into Equation 

(10), we finally complete the analytic valuation of a call-forcing convertible bond 

with consideration of the issuer’s default risk. 

2.3. Pricing a callable convertible bond with default risk 

To price a callable convertible bond, we have to determine its optimal strategies for 

the call, the voluntary conversion, and the bankruptcy. Regarding the optimal call 

policy and the optimal voluntary conversion strategy of the callable convertible bond, 

Ingersoll (1977a) has ever shown that whenever it is optimal to voluntarily convert a 

non-callable convertible bond, it will also be optimal to convert a callable convertible 

bond since the latter is always no more valuable than the former. We further assume 

that the possibility of a voluntary conversion (a call) does not affect the optimal call 

policy (the optimal voluntary conversion strategy). This assumption, which ensures 

the uncorrelation between the optimal voluntary conversion strategy and the optimal 

call policy of the callable convertible bond, may be less inappropriate but is used to 

keep the model tractable. Moreover, we assume that the optimal bankruptcy trigger of 

the call-forcing convertible bond is that of the callable convertible bond which is 
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otherwise identical. Therefore, we can conclude that the optimal voluntary conversion 

trigger of the non-callable convertible bond, and the optimal call trigger and the 

optimal bankruptcy trigger of the call-forcing convertible bond are employed to the 

callable convertible bond, where all three bonds are otherwise the same. 

The intuition is as follows. Recall that the optimal voluntary conversion trigger of 

the non-callable convertible bond, * (0)ConV , is chosen to maximize the value of the 

non-callable convertible bond, (0)NCCB , while the optimal bankruptcy trigger, 

*
1(0)BV , is chosen to maximize the corresponding equity value. On the other hand, the 

optimal bankruptcy trigger and the optimal call trigger of the call-forcing convertible 

bond, *
2 (0)BV  and * (0)CallV , are chosen to maximize the associated equity value, 

implying to minimize the value of the call-forcing convertible bond, (0)CFCB . In 

addition, the value of a callable convertible bond, (0)CCB , is between the values of 

the call-forcing convertible bond and the non-callable convertible bond, where these 

three bonds are otherwise identical, namely, (0)NCCB (0)CCB≥ (0)CFCB≥ . This is 

because the more rights the bondholders/shareholders get, the greater premium they 

need to pay. Due to the assumption that there is no interaction between the optimal 

voluntary conversion strategy and the optimal call policy for a callable convertible 

bond, we can therefore conclude that the callable convertible bondholders will choose 

the same optimal voluntary conversion strategy as * (0)ConV  to maximize (0)CCB  

where * (0)ConV  originally maximizes  (the more valuable) (0)NCCB ; similarly, the 

corresponding equityholders will choose *
2 (0)BV  and * (0)CallV  to minimize (0)CCB  

where *
2 (0)BV  and * (0)CallV  originally minimizes (the less valuable) (0)CFCB . 

   Recall that in our model the bond issuer would announce the call policy to all the 

outstanding callable convertible bonds, and in addition, all the bondholders would 
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voluntarily convert the convertibles at the same time (i.e., block conversion). As a 

consequence, we have to decide which may occur, either the call or the voluntary 

conversion. If the optimal call trigger is greater than or equal to the optimal voluntary 

conversion trigger, then the voluntary conversion may happen while the call will not. 

That is to say, we can conclude that the analytic valuation of the callable convertible 

bond is exactly that of the non-callable convertible bond which is otherwise identical. 

Similarly, if the optimal call trigger is less than the optimal voluntary conversion 

trigger, then the analytic valuation of the callable convertible bond is just that of the 

call-forcing convertible bond which is otherwise identical. Hence, the analytic 

valuation of a callable convertible bond subject to the default risk of the bond issuer 

can be expressed as follows: 

( )* * *
20; (0), (0), (0)B Con CallCCB V V V =     

( )
( )

* * * *
2

* * * *
2

0; (0), (0) , if (0) (0).

0; (0), (0) , if (0) (0).

B Con Con Call

B Call Con Call

NCCB V V V V

CFCB V V V V

≤

>
 

             (14) 

Finally, it should be emphasized that the optimal strategies for call, voluntary 

conversion, and bankruptcy are all time-dependent and are endogenously determined 

in our model. In addition, although some of the formulas are not directly related to 

one of the strategies, they may be indirectly affected by the joint determination of the 

optimal strategies. For example, in Section 2.2, the bankruptcy costs in the case of the 

call-forcing convertible bond do not directly depend on the optimal call policy but 

will be indirectly influenced through the simultaneous resolution of the 

smooth-pasting conditions. Next, the time-dependent optimal strategies in the finite 

maturity setting are matter-of-fact in comparison with the constant optimal strategies 

in the perpetual maturity setting of Sarkar (2003) because the optimal strategies do 

correlate with the time to maturity of a callable convertible bond in reality. Last but 
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not least, the simultaneous endogenous resolution of the optimal strategies, through 

the rationales of the shareholders and the bondholders, has great insights on the 

valuation of the callable convertible bond. 

 

3. Numerical Examples 

In this section, we implement some numerical examples to characterize the optimal 

strategies for call, voluntary conversion, and bankruptcy as well as the valuation of a 

callable convertible bond. In particular, we examine the effects on the optimal 

strategies and on the bond values with respect to the bond’s maturity, the coupon 

payment, the return volatility of the unlevered asset, and the risk-free interest rate. 

3.1. Optimal strategies for call and voluntary conversion 

The parameters in the base case, taken from Sarkar (2003), are as follows: 100P = , 

7C = , 0.35τ = , 0.5α = , 0.07r = , 0.04q = , 0.2σ = , 0.05β = , 0.2γ = , and 

5T = .5 All parameters in this article are the same as the base case unless otherwise 

stated. Also notice that in the numerical analyses of this article, the desired pricing 

formula of the callable convertible bond, involving some infinite sums (from zero to 

infinity), has been replaced with the finite sums (assumed from zero to ten).6 

   Figure 1 illustrates the optimal call triggers as a function of the time to maturity 

for various return volatilities of the unlevered asset. The optimal call trigger is an 

increasing function of the time to maturity when the time to maturity becomes shorter, 

and is a decreasing function of the time to maturity otherwise, that is, the optimal call 

trigger is concave to the time to maturity. The concavity is more obvious as the return 

volatility becomes larger, and therefore, the riskier bond issuer will call back the bond 

at higher unlevered asset value, which results in late calls. Figure 2 shows the 

relationship between the optimal call triggers and the risk-free interest rate for varying 
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coupon payments. Higher coupon payments will raise the optimal call trigger, which 

is convex to the risk-free interest rate except for the case of zero coupon payment. The 

reason may be that the present value of future potential tax benefits is greater for the 

bond issuer as the coupon payment increases and the risk-free interest rate decreases, 

and hence, the optimal call trigger is relatively high and the possibility of the call 

becomes extremely small. As for the case of zero coupon payment, the optimal call 

trigger is insensitive to the risk-free interest rate due to the absence of tax benefits. 

   Many callable convertible bonds are called too late relative to the optimal call 

policy derived by Ingersoll (1977a), which equals to 1 (1 )Pβ
γ

+ . In our base case, it 

is equal to 525, and hence, a late call in our model means that the optimal call trigger 

is greater than this amount. Ederington et al. (1997) provide some empirical evidences 

that the rule of Ingersoll (1977a) has not been followed in most of the time, and the 

issuers of callable convertible bonds have often ignored the opportunities to force the 

bond investors to exercise their American conversion options. They also discover that 

the issuers delay exercising their call options so as to maintain the value of tax 

benefits embedded in the convertible bonds, and that they are more likely to delay 

calls to the extent that the underlying stock is paying dividends. In our pricing model, 

the effects of tax benefits and dividends are taken into consideration, and the 

numerical results of Figures 1 and 2 show that late calls exist in most of the cases. In 

particular, higher coupon payment, lower risk-free interest rate, greater return 

volatility, and medium time to maturity will cause late calls where the optimal call 

trigger is extraordinarily high, which is generally consistent with Ederington et al. 

(1997). 

The optimal voluntary conversion triggers, plotted in Figures 3 and 4, behave 

much similarly to the optimal call triggers in Figures 1 and 2, respectively. Some 
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implications of our model are discussed as follows. The optimal voluntary conversion 

triggers are usually greater than the optimal call triggers for the most part, that is, the 

voluntary conversion will not occur in most of the cases. Nevertheless, our model 

predicts that for a callable convertible bond with very low coupon payments or with 

shorter time to maturity, smaller return volatility, and higher risk-free interest rate, the 

voluntary conversion may happen. Moreover, the numerical results also confirm that 

when the call premium is low enough, the call redemption of a callable convertible 

bond may not take place. On the other hand, for a callable convertible bond with 

higher call premium, higher coupon payment, shorter time to maturity, smaller return 

volatility and the intermediate risk-free interest rate, the call redemption may occur. 

3.2. Optimal bankruptcy strategy 

Figure 5 plots the optimal bankruptcy trigger as a function of the time to maturity for 

various return volatilities of the unlevered asset. Observe that the optimal bankruptcy 

trigger is a decreasing function of the time to maturity and is concave to the time to 

maturity. In addition, similar to Leland and Toft (1996), the greater the return 

volatility, the lower the optimal bankruptcy trigger due to the limited liability of 

equityholders. In Figure 6, generally speaking, rising coupon payments will increase 

the optimal bankruptcy trigger, which is a decreasing function of the risk-free interest 

rate, and this result is consistent with Leland (1994). The reason may be that the effect 

of the present value of future potential coupon payments dominates the effect of the 

present value of future potential tax benefits. Nevertheless, the behavior of the 

optimal bankruptcy trigger is reversed while the risk-free interest rate is rather low 

since the effect of the tax benefits is dominant in this case. For the case of zero 

coupon payment, which stands for the pure effect of the risk-free interest rate, the 

optimal bankruptcy trigger is slightly convex to and is a decreasing function of the 
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risk-free interest rate. 

3.3. Values of the callable convertible bond 

Figure 7 shows the values of a callable convertible bond as a joint function of the 

unlevered asset value and the time to maturity. The value of a callable convertible 

bond is a non-decreasing function of both the unlevered asset value and the time to 

maturity. For lower unlevered asset value, the callable convertible bond value, 

concave to the unlevered asset value, is analogous to the price of a risky coupon bond 

because the possibilities of the call and the voluntary conversion are extremely small. 

On the other hand, for higher unlevered asset value, the callable convertible bond 

value, convex to the unlevered asset value, is similar to the equity value due to 

increases in the possibilities of the call and the voluntary conversion. Moreover, when 

the time to maturity is short and the unlevered asset value is in the middle range, the 

callable convertible bond value, similar to the risk-free coupon bond value, is very 

close to the par value, which equals to 100 in our base case. This is because the events 

of call, voluntary conversion, and bankruptcy scarcely happen in this case. 

   Figure 8 illustrates the prices of a callable convertible bond as a function of the 

unlevered asset value for various return volatilities. Not only will greater return 

volatilities increase the probability of the bankruptcy but also will raise the 

probabilities of the call and the voluntary conversion. For lower unlevered asset value, 

the former effect is dominant and thus the callable convertible bond value decreases 

as the return volatility goes up. However, for higher unlevered asset value, the latter 

effect dominates and hence, the callable convertible bond value increases with rising 

return volatilities. In addition, related to our earlier discussion in Figure 7, we observe 

that higher and lower unlevered asset values make the callable convertible bond 

behave like the equity and the risky coupon bond, respectively. Therefore, under 
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higher unlevered asset value, an increase in the volatility can raise the price of a 

callable convertible bond due to the property of the equity value. On the other hand, 

the callable convertible bond acts as the risky coupon bond under lower unlevered 

asset value and consequently, the higher the return volatility, the lower the price of a 

callable convertible bond. 

   Table 1 exhibits the values of the callable convertible bond for varying coupon 

payments, risk-free interest rates, and unlevered asset values. An increase in the 

coupon payment can raise the value of the callable convertible bond in most of the 

cases, which accords well with the intuition. However, there are some significant 

exceptions when the unlevered asset is 700, the coupon payment equals to 0, 1, and 3 

among all various risk-free interest rates (excluding the case of 700V = , 3C =  and 

0.01r = ). In view of Figure 2, we can observe that in these exceptional cases, the 

optimal call triggers are less than 700, and thus the callable convertible bond has been 

called back and will be forced to convert into common shares. As a result, it is similar 

to the equity whose value falls as the coupon payment increases. 

   Higher risk-free interest rate causes lower values of the callable convertible bond 

for the most part, corresponding with the general property of bonds. Nevertheless, 

there are three sorts of significant anomalies in Table 1. First of all, increasing 

risk-free interest rate raises the values of the callable convertible bond when 100V = , 

0C =  with 0.01r =  and 0.03r = , and when 100V = , 9C =  with 0.05r =  and 

0.07r = . This anomaly can be explained by Figure 6, which shows the above two 

cases correspond to higher optimal bankruptcy triggers and thus suffer from more 

bankruptcy risk. The callable convertible bond is, therefore, analogous to a kind of 

junk bonds, of which the price is positively correlated to the risk-free interest rate, as 

noted in Leland (1994). Next, the second anomaly emerges as 700V = , 1C =  with 
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0.01r =  and 0.03r = . According to our earlier analyses, the callable convertible 

bond has been converted into the common shares in this case, and hence the bond 

price, similar to the equity value, increases with a rise in the risk-free interest rate. 

Finally, the last anomaly appears when 700V = , 7C =  with 0.01r =  and 

0.03r = , and when 700V = , 9C =  with 0.01r =  and 0.03r = . From Figures 2 

and 6, when 0.01r =  with 7C =  and 9C = , the optimal call triggers are 

extremely high compared with the unlevered asset value, 700, and the optimal 

bankruptcy triggers are almost close to zero. As a result, the callable convertible bond 

is nearly similar to a default-free coupon bond. However, when the risk-free interest 

rate increases from 0.01 to 0.03, the optimal call triggers sharply decrease and the 

optimal bankruptcy triggers slightly rise. Hence, the reason of the last anomaly is the 

effect of increasing call probabilities dominates the effect of increasing bankruptcy 

probabilities. In addition, Table 1 also shows that the values of a callable convertible 

bond, characterized with higher coupon payments and lower risk-free interest rate, are 

more sensitive to the risk-free interest rate, especially in the case of higher unlevered 

asset value. 

 

4. Asset Substitution Problem 

The asset substitution/risk shifting problem states that shareholders wish to increase 

the riskiness of firm’s activities so as to transfer value from bondholders to 

themselves. For example, shareholders may adopt a riskier investment project with 

negative net present value (NPV). Some structural models, such as Merton (1974), 

explicitly regard the equity value as a call option on the firm’s asset value, and 

therefore, the asset substitution problem appears in such models due to the Vega 

property of the call option, that is, increasing the return volatility of the firm’s asset 
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will result in higher equity values. Barnea et al. (1980) explore this analogy and 

suggest that issuing shorter-term debts may reduce the incentives of shareholders to 

increase risk. In addition, the monitoring role of convertible debts in resolving risk 

shifting problems is studied in the literatures. For instance, Green (1984) shows that 

convertible bonds can be used to restore the positive NPV maximization rule of the 

shareholders. Recently, Chesney and Gibson-Asner (2001) propose a down-and-out 

equity valuation model that applies to a leveraged firm facing the asset-based 

exogenous solvency rule, and they also show that the optimal volatility selection of 

shareholders is lower in the case where the firms financed with convertible debts. The 

equity in our model, however, can not be viewed as a simple down-and-out barrier 

option. This is because in our setting, default can occur at any time during the life of 

the debt and the optimal bankruptcy trigger also varies with the riskiness of the firm’s 

activities; most importantly, tax benefits and bankruptcy costs are taken into 

consideration to derive the equity value. 

To clearly illustrate whether issuing convertible bonds instead of coupon bonds 

can reduce the risk shifting problem, we first consider a risky coupon bond as a sole 

debt obligation in our framework. Following the same methodology in Section 2, the 

risky coupon bond price, the total firm value, and the equity value can then be 

obtained, and the optimal bankruptcy strategy can be also endogenously determined 

by the corresponding smooth-pasting condition, which is similar to Equation (7) or 

Equation (12). Moreover, we can define the risk shifting intensity as the partial 

derivative of the equity value with respect to the return volatility of the unlevered 

asset. Hence, the positive risk shifting intensity represents that shareholders have 

incentives to increase the riskiness of firm’s activities. Using the parameters of the 

base case in the previous section, we provide Figure 9 to compare the risk shifting 
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intensities between the coupon-bond-based model (where the coupon bond is the only 

debt obligation) and the callable-convertible-bond-based model (where the callable 

convertible bond is the only debt of the firm, i.e., the same model as in Section 2.3). 

   Figure 9 plots the risk shifting intensities as a function of the unlevered asset value. 

Panels 1-1 and 1-2 plot the risk shifting intensities of the coupon-bond-based model 

with the time to maturities of 6 months and 5 years, respectively. Panels 2-1 and 2-2 

plot the risk shifting intensities of the callable-convertible-bond-based model with the 

time to maturities of 6 months and 5 years, respectively. Observe that (i) Panels 1-1 

and 1-2 display that the risk shifting intensities approach to zero as the unlevered asset 

value goes up, that is, there is almost no asset substitution problem when the default 

risk is rather small; (ii) shorter time to maturities will reduce the asset substitution 

problem both in the coupon-bond-based model and the callable-convertible-bond- 

based model, which is generally consistent with Barnea et al. (1980); (iii) the 

hypothesis that callable convertible bonds can be used to resolve the risk shifting 

problem is numerically validated by comparing Panels 1-1 and 1-2 with the 

corresponding Panels 2-1 and 2-2; (iv) Panels 2-1 and 2-2 show that positive risk 

shifting intensities appear again as the unlevered asset value becomes higher because 

these callable convertible bonds have been called back and forced to convert into 

common shares. 

 

5. Concluding Remarks 

In this article, we construct a structural model to derive the analytic valuation of a 

callable convertible bond by the pricing method of double-barrier options with 

consideration of the possibilities that the call, the voluntary conversion, and the 

bankruptcy can occur prior to the maturity of the bond. Our model also takes the 
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bankruptcy cost, the tax benefit, and the time to maturity of the bond into account. 

Not only are the optimal call and bankruptcy strategies endogenously determined by 

the shareholders as the equity value is maximized, but also the optimal voluntary 

conversion strategy is obtained by the bondholders while the value of the convertible 

bond is maximized. 

In summary, our numerical results predict that (i) late calls are in most of the cases, 

and higher coupon, lower risk-free interest rate, greater return volatility, and medium 

time to maturity will lead to the extreme late call case where the optimal call trigger 

becomes extraordinarily high, which is generally consistent with Ederington et al. 

(1997); (ii) the voluntary conversion may occur in the cases of the callable convertible 

bond with very low coupon payments, or with shorter time to maturity, smaller return 

volatility, and higher risk-free interest rate; (iii) the call redemption may take place in 

the case of the callable convertible bond with greater call premium, higher coupon 

payment, shorter time to maturity, smaller return volatility and the intermediate 

risk-free interest rate. In addition, our model suggests that shorter-term bonds are 

useful to reconcile the asset substitution problem, which is consistent with Barnea et 

al. (1980). Particularly, we have confirmed the hypothesis that callable convertible 

bonds can be used to reduce the risk shifting problem. 

   By and large, the analytic valuation of the callable convertible bond in our model 

is simple, yet complete. Further, traders and portfolio managers of convertible bonds 

may benefit from the pricing formula and the predictions of the numerical results to 

decide their trading strategies. In our model, the risk-free interest rate is assumed to be 

constant, and in addition, the debt structure of the firm is supposed to be a single 

callable convertible bond. In regard to these simplifications, taking other debt 

obligations, such as corporate coupon bonds and bonds with warrants, into 
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consideration is a straightforward extension of our model while the more complex 

capital structures are desired to be determined. Moreover, the analytic valuation of a 

callable convertible bond with zero coupon payment (similar to Liquid Yield Option 

Notes, LYONs) under stochastic interest rates can be also directly derived by a 

time-change Brownian motion technique in our framework. 
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Appendix7 

In this Appendix we provide the analytic expressions of 0
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, which can be divided into two parts. One is related to 

the distribution of a stopping time of a standard Brownian motion with constant drift. 

The other is associated with the joint distribution of two stopping times of a standard 

Brownian motion with constant drift. 

   Regarding the first part, many books which discuss standard Brownian motions 

would provide the desired distribution, for example, Chapter 1 of Harrison (1985). By 

Girsanov Theorem and the technique of completing squares, the following formulas 

can be derived. 
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where 20.5r qλ σ= − − , * 2 22rλ λ σ= + , and ( )Φ ⋅  denotes the cumulative 

standard normal distribution. 

   As for the second part, we refer to Kolkiewicz (2002) where the desired 

distributions are provided in a systematic way. Notice that in the following results we 

implicitly assume that the upper barrier and the lower barrier do not intersect during 
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the remaining life of the bond. Again, Girsanov Theorem and the use of completing 

squares will result in the following formulas: 
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Footnotes 

1 As long as a firm remains solvent, it will roll over the matured debts by issuing new 

debts with the identical provisions. 

2 The assumption of the constant interest rate seems to be a limitation, but Brenann 

and Schwartz (1980) have ever indicated that the pricing errors are likely to be small. 

3 All of the optimal strategies in the numerical examples of this article have been 

checked for the second order sufficient condition of maximization. 

4 In views of Equations (10) and (11), the equity value evaluated at *,0
CallV  is equal to 

( )*,0 *,0max , (1 )Call Call
CV V P
r

γ β − + − 
 

. 

5 Note that the maturity of the bond is infinite in Sarkar (2003). 

6 The similar finite sum from zero to six in Kolkiewicz (2002) will achieve the 

precision at the 41 10−×  level. 

7 In Appendix, all notations are defined in the text. The derivations of the formulas are 

rather lengthy and are available upon request. 
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Table 1  

Values of the callable convertible bond for various coupon payments C  

risk-free interest rates r , and unlevered asset values V * 

 0C =  1C =  3C =  5C =  7C =  9C =  

        
0.01r = 70.1304 79.8774 99.9895 118.831 129.262 139.016

0.03r = 76.0017 78.064 81.3014 83.4202 84.5099 84.6794

0.05r = 73.8349 76.6368 81.1219 84.0518 85.3629 84.9772

0.07r = 69.1157 72.5535 78.6639 83.6004 87.1546 89.0153

100V =
 

0.09r = 63.3819 67.0840 74.0637 80.3516 85.7869 90.0955

        
0.01r = 85.2181 104.093 115.312 121.729 130.018 139.270

0.03r = 85.6840 92.7388 105.112 114.616 122.886 130.972

0.05r = 85.1181 89.3716 97.9861 106.110 113.915 121.681

0.07r = 84.4142 87.4606 93.8555 100.333 106.946 113.800

400V =
 

0.09r = 83.5488 85.9600 91.0112 96.2024 101.657 107.494

        
0.01r = 172.525 136.598 155.878 155.601 150.698 150.474

0.03r = 170.140 146.043 138.438 146.410 155.064 161.722

0.05r = 157.296 145.580 138.539 141.096 146.529 152.405

0.07r = 151.048 143.882 139.065 140.444 144.093 148.402

700V =
 

0.09r = 148.521 142.986 139.323 140.526 143.488 146.918

        
* All parameters in this table are the same as the base case in the text unless otherwise noted, and the 

optimal strategies for call, voluntary conversion, and bankruptcy are determined endogenously. 
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Figure 1 

Optimal call triggers as a function of the time to maturity T  for various return 

volatilities σ  

The lines plot the optimal call triggers as a function of the time to maturity with return 

volatilities of 0.1 (gray line), 0.3 (dashed line), 0.5 (solid line), 0.7 (bold dashed line), 

and 0.9 (bold solid line). The parameters are given as follows: 100P = , 7C = , 

0.35τ = , 0.5α = , 0.07r = , 0.04q = , 0.05β = , and 0.2γ = .  
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Figure 2 

Optimal call triggers as a function of the risk-free interest rate r  for various 

coupon payments C  

The lines plot the optimal call triggers as a function of the risk-free interest rate with 

coupon payments of 0 (solid-dashed line), 1 (dashed line), 3 (solid line), 5 (bold 

solid-dashed line), 7 (bold dashed line), and 9 (bold solid line). The parameters are 

given as follows: 100P = , 0.35τ = , 0.5α = , 0.04q = , 0.2σ = , 0.05β = , 

0.2γ = , and 5T = .  
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Figure 3 

Optimal voluntary conversion triggers as a function of the time to maturity T  

for various return volatilities σ  

The lines plot the optimal voluntary conversion triggers as a function of the time to 

maturity with return volatilities of 0.1 (gray line), 0.3 (dashed line), 0.5 (solid line), 

0.7 (bold dashed line), and 0.9 (bold solid line). The parameters are given as follows: 

100P = , 7C = , 0.35τ = , 0.5α = , 0.07r = , 0.04q = , 0.05β = , and 0.2γ = . 
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Figure 4 

Optimal voluntary conversion triggers as a function of the risk-free interest rate 

r  for various coupon payments C  

The lines plot the optimal voluntary conversion triggers as a function of the risk-free 

interest rate with coupon payments of 0 (solid-dashed line), 1 (dashed line), 3 (solid 

line), 5 (bold solid-dashed line), 7 (bold dashed line), and 9 (bold solid line). The 

parameters are given as follows: 100P = , 0.35τ = , 0.5α = , 0.04q = , 0.2σ = , 

0.05β = , 0.2γ = , and 5T = .  
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Figure 5 

Optimal bankruptcy triggers as a function of the time to maturity T  for 

various return volatilities σ  

The lines plot the optimal bankruptcy triggers as a function of the time to maturity 

with return volatilities of 0.1 (gray line), 0.3 (dashed line), 0.5 (solid line), 0.7 (bold 

dashed line), and 0.9 (bold solid line). The parameters are given as follows: 100P = , 

7C = , 0.35τ = , 0.5α = , 0.07r = , 0.04q = , 0.05β = , and 0.2γ = .
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Figure 6 

Optimal bankruptcy triggers as a function of the risk-free interest rate r  for 

various coupon payments C  

The lines plot the optimal bankruptcy triggers as a function of the risk-free interest 

rate with coupon payments of 0 (solid-dashed line), 1 (dashed line), 3 (solid line), 5 

(bold solid-dashed line), 7 (bold dashed line), and 9 (bold solid line). The parameters 

are given as follows: 100P = , 0.35τ = , 0.5α = , 0.04q = , 0.2σ = , 0.05β = , 

0.2γ = , and 5T = .  

 



 43

 

50
250

450
650

0.5

4.5

8.5

0

20

40

60

80

100

120

140

160

180

C
al

la
bl

e 
C

on
ve

rti
bl

e 
B

on
d 

V
al

ue

V T

 
 
Figure 7 

Values of the callable convertible bond as a joint function of the time to maturity 

T  and the unlevered asset value V  

The surface plots the value of the callable convertible bonds for varying levels of the 

unlevered asset values and the time to maturities. The optimal strategies for call, 

voluntary conversion, and bankruptcy are determined endogenously. The parameters 

are given as follows: 100P = , 7C = , 0.35τ = , 0.5α = , 0.07r = , 0.04q = , 

0.2σ = , 0.05β = , and 0.2γ = .  
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Figure 8 

Values of the callable convertible bond as a function of the unlevered asset value 

V  for various return volatilities σ  

The lines plot the prices of the callable convertible bond as a function of the 

unlevered asset value with return volatilities of 0.1 (bold solid line), 0.3 (bold dashed 

line), 0.5 (solid line), 0.7(dashed line), and 0.9 (gray line). The parameters are given 

as follows: 100P = , 7C = , 0.35τ = , 0.5α = , 0.07r = , 0.04q = , 0.05β = , 

0.2γ = , and 5T = .  
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Panel 2-1, T =0.5
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Figure 9 

Risk shifting intensities as a function of the unlevered asset value V  for the 

coupon-bond-based model and the callable-convertible-bond-based model 

The panels plot risk shifting intensities, which stand for the partial derivatives of the 

equity value with respect to the return volatility, as a function of the unlevered asset 

value. Panels 1-1 and 1-2 show risk shifting intensities for the coupon-bond-based 

model (where the coupon bond is the only debt obligation) with the time to maturities 

0.5 and 5, respectively. Panels 2-1 and 2-2 show risk shifting intensities for the 

callable-convertible-bond-based model (where the callable convertible bond is the 

only debt obligation) with the time to maturities 0.5 and 5, respectively. The optimal 

strategies for call, voluntary conversion, and bankruptcy are determined endogenously. 

The parameters are given as follows: 100P = , 7C = , 0.35τ = , 0.5α = , 0.07r = , 

0.04q = , 0.2σ = , 0.05β = , 0.2γ = , and 5T = . 


