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Abstract

This dissertation empirically investigates the characteristics of gold futures

returns and achieves the valuation of American-style options when the underlying

gold futures price follows a regime-switching jump-diffusion process. Under such

dynamics, the jump events are described as a compound Poisson process with a

log-normal jump amplitude, and the regime-switching arrival intensity is captured by

a hidden Markov chain whose states represent the economic states. Considering the

different jump risk assumptions, we use the Merton measure and Esscher transform to

derive risk-neutral gold futures price dynamics under an incomplete market setting.

To achieve a desired accuracy level, the least-squares Monte Carlo method is used to

approximate the values of American gold futures options. Our empirical and

numerical results based on actual market data are provided to illustrate the advantages

of this dynamic model.

Keywords: American gold futures option; Regime-switching jump-diffusion process;

Merton measure; Esscher transform; Least-squares Monte Carlo method
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Chapter 1

| ntr oduction

Gold is a precious metal, which in recent years is considered to be an investment tool
alternative to equity and bond markets. It provides similar functions as money in that
it acts as a preserver of wealth, a medium of exchange and a unit of value. Unlike
other commodities, gold is a special asset with renewable, relatively transportable,
universally acceptable and easily authenticated. The unique and diverse drivers of
gold price behavior not highly correlate with changes in other financial assets. As a
consequence, this precious metal can contribute in a saving role by acting as a type of
insurance against extreme movements and jumps in the value of traditional assets
during times of economic and market stress (Capie et al., 2005; Baur and Lucey, 2010;
Baur and McDermott, 2010; Reboredo, 2013; Zagaglia and Marzo, 2013). Gold is a
liquid asset, continuously quoted on spot and futures markets and easy to trade. In
addition to Beckers (1984) and Ball et al. (1985) empirically investigate the gold
options market under the Black—Scholes framework, others, for instance, Ogden et al.
(1990) study gold spot and futures options. It is well known that the presence of
jumps in the underlying asset price can have significant implications on pricing

derivatives, but these aforementioned papers do not address such jump phenomena.



The increasing number of jJump events, especially after the subprime financial crisis

of 2008, has created large fluctuations in the gold futures prices and related

derivatives (e.g., American gold futures options). For the market development, it is

crucial in capturing the dynamic jump process appropriately and evaluate American

gold futures options corresponding to the changing prices of gold futures.

Most exchange-traded option contracts are American style and therefore, many

numerical methods have been presented attempting to evaluate American options,

including the lattice (Cox et al., 1979), finite difference (Brennan and Schwartz, 1977;

Hull and White, 1990), and Monte Carlo simulation methods (Boyle et al., 1997).

Increasing the number of steps comes at the cost of exponential growth in the size of

the lattice pricing methods. Longstaff and Schwartz (2001) propose an algorithm for

pricing American options called least-squares Monte Carlo (LSM) approach. This

technique proceeds by simulating forward paths using the Monte Carlo simulation,

and then performs backward iterations by applying least-squares approximation of the

continuation function over a collection of basic functions. This algorithm is simple to

implement within existing Monte Carlo frameworks, and has the additional

advantages that the continuation functions are constructed explicitly and it is easy to

calibrate to existing market prices. Therefore, we adopt this approach to evaluate



American gold futures options.
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Figure 1.1 Time series (top panel) and logarithmic returns (bottom panel) of daily gold futures prices
Note that the dotted lines in the bottom panel denote the gold futures returns over +5% in magnitude
are jumps. The gold futures data is the one month forward contract attained from the continuous futures
series from Datastream with switchovers at the first day of a new month. The futures contracts are the
daily CMX-Gold-100-Oz.



The top panel of Figure 1.1 draws some significant price jumps of gold futures in
the daily data.’ In particular, it shows that there are larger jumps (returns) in several
time periods. In the oil crisis of 1979 and subprime financial crisis of 2008, for
example, gold futures prices had larger jumps. The empirical data have revealed that
the geometric Brownian motion (GBM) is not completely consistent with the reality,
that is, the jumps do exist in the gold futures price realizations. Hence, incorporating
sudden random shocks into a dynamic model is necessary and significant (Carr et al.,
2002; Eraker et al., 2003; Eraker, 2004; Maheu and McCurdy, 2004). In line with the
changing gold futures returns in the bottom panel of Figure 1.1, we could identify two
regimes of the gold futures market. The first state is defined as the relatively
low-volatility regime and can be viewed as the ordinary state. The second state is
defined as the relatively high-volatility regime and can be regarded as the volatile
state. In addition, we also find that, in the gold futures market, the bottom panel of
Figure 1.1 exhibits different arrival rates of jump events in different time periods. It is
an empirical fact that there exists the so-called jump and volatility clustering in the
logarithmic return series of gold futures prices caused by a period of time of high (low)
arrival rates tend to be followed by a period of time of continued high (low) arrival

rates. Nevertheless, the existing jump-diffusion processes, such as in Merton (1976),

! The empirical data are from Datastream and cover the period from 01/01/1979 to 12/31/2010.
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Amin (1993), and Kou (2002), are unable to address the phenomenon of volatility

clustering. Duan et al. (2006) evaluate options when there are jumps in the pricing

kernel and correlated jumps in asset prices and volatilities. The models capture

leptokurtosis and volatility clustering but do not show the regime-switching

phenomenon. Chan and Maheu (2002) propose a time-varying Poisson jump model to

describe the jump dynamics of the stock prices in the discrete time circumstance. In

the light of our empirical observations in Figure 1.1 with economic intuition, the

change of gold futures prices represents that the economy stays in each state for a

period of time and then transitions to the other, as well as the jump intensity changes

over time according to the different regimes of the economy.

In order to incorporate both unanticipated jump events and regime-switching

arrival rates in the oscillating gold futures market simultaneously, we model the gold

futures price dynamics using a regime-switching jump-diffusion model (RSJM)

proposed by Chang et al. (2013). Under such a model, the jump events are described

as a compound Poisson process with the log-normal jump amplitude setting applied

by Merton (1976), and the regime-switching arrival intensity is governed by a

continuous-time finite-state Markov chain. The states of the Markov chain can be

interpreted as the hidden states of an economy. The regime-switching models are used



to describe the asset price dynamics and are applied for option pricing. Elliott et al.

(2007) investigate the option prices under a generalized Markov regime-switching

jump-diffusion economy for the use of the Esscher transform employed by Elliott et al.

(2005) and Elliott and Osakwe (2006) for valuing options under a regime-switching

environment. Elliott and Siu (2011) incorporate structural changes in economic

conditions in asset price dynamics and American option valuation. None of these

discussions provide the empirical tests for the observed features and model fit of their

dynamic processes. In this dissertation, we demonstrate that the dynamic model

describes the existence of jump events, leptokurtosis, asymmetry, and volatility

clustering for the gold futures returns, and illustrate the presence of regime-switching

arrival rates and jump clustering, and verify the superior empirical fit over competing

models.

The market is incomplete in such a Markov regime-switching jump-diffusion

economy, and we therefore need to select a pricing kernel for option valuation.

Previous researches empirically illustrate that gold is either a zero or negative beta

asset (McCown and Zimmerman, 2006; McCown and Zimmerman, 2007; Baur and

Lucey, 2010; Baur and McDermott, 2010). This means that, under the CAPM

assumptions, the jump component of the gold futures returns shows non-systematic or



systematic risk. Thus, we make use of two specific approaches for choosing the

martingale pricing measure to derive the risk-neutral gold futures price dynamics.

First, we assume that the jump component of the gold futures returns presents

non-systematic and diversifiable risk, that is, under the assumption that the jump risk

is not priced, as in Merton (1976). Second, we relax this assumption to allow for the

jump risk, regarding which as systematic and non-diversifiable. Then, the Esscher

transform technique developed by Gerber and Shiu (1994, 1996) is considered to

determine a risk-neutral pricing measure. After determining such martingale dynamics

of the gold futures prices, we use the LSM algorithm to approximate the values of

American gold futures options. Considering the jump events and economic states are

unobserved when estimating the parameters of the RSJM, the model parameters are

estimated using the expectation maximization (EM) algorithm (Lange, 19953, b) and

the standard errors of parameter estimators are obtained using the supplemented

expectation maximization (SEM) algorithm (Meng and Rubin, 1991). From the

empirically estimated parameters in the dynamic model and the LSM-simulated

option prices, we show that the model is more accurate than competing models in

pricing American gold futures put options.

The main results from this dissertation can be summarized as follows. First, we



empirically analyze the gold futures returns for understanding the market operation

and the risks involved. Our findings are valuable for gold futures price modeling and

for other gold derivative asset pricing. Second, we derive the risk-neutral gold futures

price dynamics via the Merton measure and Esscher transform under the different

jump risk settings. Finally, we use actual market data to investigate the pricing

performance of the LSM method for American gold futures put options and illustrate

the importance of incorporating state-dependent jump risks into the dynamic price

model on gold futures.

The remainder of this dissertation is organized as follows. Chapter 2 presents the

model setting and numerical method. Chapter 3 illustrates the measure change of two

specific approaches and the valuation of American gold futures options. Chapter 4

discusses the results of empirical analyses and numerical illustrations. Chapter 5

presents the conclusions of this dissertation.



Chapter 2
Model Framework and Pricing Method

The empirical data of Figure 1.1 demonstrate that the frequency of sudden random
shocks can be significantly different under different regimes of the gold futures price.
Based on these observations, it seems inadequate to assume that the jump arrival
intensity follows a pure Poisson process, and we therefore use a Markov-modulated
Poisson process to model the jump risk components. For valuing American gold
futures options, the LSM method is adopted to approximate the option values by
simulation when the underlying gold futures price follows a continuous-time, Markov,

regime-switching jump-diffusion process.

2.1 Markov-modulated Poisson process

The Markov-modulated Poisson process @(t) is a Poisson process in which the
underlying state is governed by a hidden Markov chain X(t) (Last and Brandt,
1995). More precisely, instead of the constant (average) arrival intensity under a
Poisson process used in the Merton-type jump-diffusion model (JDM) (Merton, 1976),
the jump component of the gold futures price is set to be a Markov-modulated Poisson

process whereby the intensity process of jump events is different in different states.



The regime-switching arrival intensity Ay, of ®(t) is modulated by X(t), with
the transition function B;(t) on the finite state space X= {1,2,..., I}. For i,jeX,
we denote the transition rate (i, j) from state X(0)=i tostate X(t)=] of d(t)

as

¥(, j), =],
w(i, §)= —Z ¥(i, j), otherwise, (2.1)

Jrj=i

The notation W= (¥(i, j)),,, representsthe IxI matrix of the transition rate with

diagonal elements :_Z ¥ =—V;. Vv; Is the departure rate at which the

j=1j=i

process leaves state i. Since the Markov chain has a finite number of states, the
Poisson arrival intensity takes discrete values corresponding to each state. From the
Markov structure of X(t), Last and Brandt (1995) give the moment-generating

function for the joint distribution function of X(t) and ®(t) via the Laplace

inverse transform as follows:

P =3 P, 0L, 22)
n=0

where ¢ is a complex number. P(n,t)=(P;(n,t)),,, represents the IxI
transition probability matrix and B;(n,t) =P(X(0) =i, X(t) = j, ®(t)=n) denotes
the transition probability with n jump times from state X (0)=i to state X(t)=j.

10



Here, P(n,O):(l{n:O}Dij), where Dy =1 if i=j and O, otherwise. Using the
Kolmogorov  forward equation, the derivative of P(n,t)  becomes

%P(n,t) = (U —-A)P(n,t)+1, ., AP(n—11). Thus, the unique solution of P"(,t)

{n1)

can be obtained as
P'(C.)=exp((T—(@-QA)t), (2.3)

where A= (A\y ). denotesthe Ix1 diagonal matrix of the arrival intensity with

~ A"

diagonal elements ); . The exponential power series, are given as et = Zn .
=0 n!

forany Ixl matrix A and A°=(Dij).AppIying the Laplace inverse transform of
Equation (2.2) and the unique solution of Equation (2.3), we have the joint

distribution of X(t) and ®(t) attime t with the following equation:

P(n,t) = - P (1) o (2.4)

a¢n
2.2 Gold futures price modeling

Let (Q, F,P) be acomplete probability space, where P is the physical probability
measure. For each te[O,T], we consider that the sample path for the gold futures
price is continuous except on finite points in time, and the arrival intensity of jump

events depends on the hidden states of an economy. The RSIJM for the underlying

11



gold futures price at time t, F(t), can be written as

dF (t) S
—o=(p—Ar)dt+odW (1) +d| D " (exp(Y,)-1)|, (25)
F(t-) k=1

where the appreciation rate x and the volatility o are constants and W(t) is a
Wiener process under P . Specifically, the jump risk components are indicated by the
Markov-modulated Poisson process @®(t) with the arrival intensity matrix
A=Ayx@)ia » and the jump amplitude is supposed to follow a log-normal
distribution, as in Merton (1976). {Yk :k:1,2,...} are the jump amplitudes, which
are assumed to be independently identically distributed non-negative random
variables with the density function f,(y). If a jump event occurs at time k, the
jump amplitude Y, is normally distributed with mean x, and variance o-f,. As a
consequence, the mean percentage jump amplitude of the gold futures price is
ff:E[exp(Yk)—l]:exp[uy+%o§]—1:¢Y(1)—1. In Equation (2.5), we assume
that all random shock processes W(t), @®(t), X(t), and Y, are mutually

independent.

2.3 Least-squares Monte Carlo approach
Longstaff and Schwartz (2001) show that an American option can be evaluated using

12



the LSM technique to achieve a desired accuracy level. This advantage supports us to
use the LSM approach for pricing American gold futures options under the RSJM, in
contrast with the shortcomings of the lattice pricing methods. Let @ denote a
sample path of the underlying asset price generated by the Monte Carlo simulation
over a discrete set of 7 exercise times 0<t <t, <...<t =T. The continuous
exercise property of an American option is approximated by taking sufficiently large
7. Let C(m,s;t,T) denote the path of cash flows generated assuming the option is
not exercised at or before time t and the option holder follows the optimal exercise
policy for all subsequent se (t,T]. At maturity, the investor exercises the option if it
is in the money. At time t, prior to expiration, the option holder must decide whether
to exercise at that point or to continue and revisit the decision at the next time point.
Here, although the option holder knows the immediate exercise payoff, he has no
exact idea of the expected cash flows from continuation. According to the
no-arbitrage pricing theory, F(a);tk), the continuation value at time t, for path o,

is formally given by

T

Fluit)=E°| 3 exp(—r(w,tj;tk))C(w,tj;tk,T>

j=k+1

F |, (2.6)

where r(w,tj;tk) is the risk-free discount rate, Q is a martingale pricing measure,

13



and the expectation of the cash flows is taken conditional on the information set F
at time t, . Supposing the continuation value is estimated, we can decide whether it is
optimal to exercise at time t, or continue by comparing the immediate exercise
value with the estimate of the continuation value. The procedure is repeated until
exercise decisions have been determined for each exercise point on every path. Thus
by estimating the conditional expectation function for each exercise date, a complete
specification of the optimal exercise strategy can be obtained along each path. Once
the exercise strategy has been estimated, the valuation of an American option is

approximately achieved.

14



Chapter 3
Valuation of American Gold Futures Optionsin
a Markov Regime-Switching Jump-Diffusion

Economy

The security economy described by Equation (2.5) is incomplete, meaning that under
the assumption of no arbitrage opportunities in this market, there are infinitely
equivalent martingale measures with which to price options. Therefore, we need to
determine a risk-neutral pricing measure Q, under which the gold futures prices
discounted at the risk-free rate are Q -martingales. In order to reflect the argument of
previous studies that gold is either a zero or negative beta asset (McCown and
Zimmerman, 2006; McCown and Zimmerman, 2007; Baur and Lucey, 2010; Baur
and McDermott, 2010), we consider the different assumptions for a jump risk, and
then use the Merton (1976) measure and the Esscher transform adopted from Gerber
and Shiu (1994, 1996) for the RSIJM to select the martingale pricing measure such

that risk-neutral gold futures price dynamics are obtained.

15



3.1 Merton measure for the Markov regime-switching

jump-diffusion process

In this section, we follow the assumption of a diversifiable jump risk made by Merton
(1976), which implies that no premium is paid for such a risk. We then use the
Merton's approach for the RSIJM to identify a risk-neutral pricing measure by
changing the drift of the Wiener process but leaving the other ingredients unchanged.
To determine the martingale pricing measure, we decompose the gold futures
logarithmic return Z(t) = Iog(F(t)/ F(O)):C(t)+J(t) into a continuous diffusion
part C(t):[y—%az—l\/@]t—i—oW(t) and a jump part J(t)zszl’vk, for all
te[0,T]. Here, let F* and F* for the P -augmentation of the natural filtrations
generated by Z(t) and X(t) , respectively. For each te[0,T], we define
F =F°VvE" as the o- algebra. In this case, the Radon-Nikodym derivative is

given by

_ exp (oW (t))
r E [exp(ow (t))

dQM
dP

M (t)=

= exp[aW (t)—%azt], (3.1)

Fr ]

where QY s the risk-neutral pricing measure (Merton measure) resulting from this
, : —r), .
approach. Under these assumptions, we can obtain that W™ (t) :W(t)—l-[’u—]t IS
o

a Wiener process under Q" , which means that the investors receive a premium

16



[“_r] for the continuous diffusion risk at time t, and thus the Wiener process is
o

affected by the measure change. In addition, under Q™ , we also have the distribution

of the Markov-modulated Poisson process as

PM (@(t) =n|X(t),t>0)=E = P(&(t) =n|X (t),t > 0)

M
§ (t)l{q>(t):n\xa),t>o}

t n
A d
o
n!

t
exp[—fo Ax(s)ds], P-as. (3.2)

which means that the investors receive a zero premium for the jump risk, and hence
the transition probability matrix P™ (n,t)=P(n,t) and the arrival intensity matrix

AM = A are unchanged by the measure change, that is, the risk-neutral properties of
the jump component of the gold futures price are supposed to be the same as its

statistical properties. In particular, the independently identically distributed jump

i.i.d.
amplitudes Y N/ zy,07

y) are also unchanged. Appendix A shows the detailed

proof. Accordingly, the risk-neutral process for the gold futures price dynamics under

QY is
dF (1) 2" ()
m:(r—AMm)dtJradWM(t)er ;(exp(YkM)l)], (3.3)

17



3.2 Esscher transform for the Markov regime-switching

jump-diffusion process

In this section, we relax the model assumptions of Merton (1976), and then apply the
Esscher transform (Gerber and Shiu, 1994, 1996) used by Elliott et al. (2005) and
Elliott and Osakwe (2006) for the RSJM to determine a risk-neutral pricing measure.
Under the given filtered probability space (Q, F.P.{F }te[O,T])’ the Radon-Nikodym

derivative of the Esscher transform can be expressed

o(t)
J
exp(0°oW (1)) ' exp[@ ;Y"

a(t)

0°> Y,
k=1

o dQ”
="

R \ E [exp(&cow (t))

R ] Elexp

0 J
= exp[@CoW (t) —%(QCU)Zt]-exp[eJ ZYk —Ar"t

k=1

: (3.4)

where Q7" is the Esscher measure and 6™ <R for m={C,J}, in which ¢° and
@’ are the Esscher parameters of the continuous diffusion part C(t) and the jump
part J(t) for the gold futures logarithmic return Z(t) , respectively. As a
consequence, the mean percentage jump amplitude of the gold futures price becomes
kY = E[exp(@JYk)—l}:exp[HJuy +%(0J0'y)2]—1:¢y(0‘])—1. Furthermore, the
concrete form of the Esscher transform density process £/ (t) is an exponential

18



F, -martingale.

According to the general theory of derivative pricing, the absence of arbitrage
opportunities is equivalent to the existence of an equivalent martingale measure under
which the discounted asset price processs is a martingale. For the no-arbitrage
valuation of American gold futures options, there exists a risk-neutral pricing measure
such that the Markov, regime-switching jump-diffusion process for the gold futures

price is an F, - martingale under this measure. Let the Esscher transform be defined

by Equation (3.4). Then, the martingale condition is satisfied if and only if

oC _ r—u2+Af<e (3.5)
g
and
—u 1
y y
9 = — 2 (3.6)
g

Appendix B shows the detailed proof.

An equivalent martingale measure can be treated as the Esscher measure QY
with respect to the measure P. We begin with identifying the dynamic process for

gold futures prices under the risk-neutral pricing measure Q? . Let 6° and 6’ be

19



the Esscher parameters of the risk-neutral Esscher measure. Then, under Q%" and

conditional on F?

W7 (t) =W (t) - 6°at (3.7)

is a Wiener process. Furthermore, under QY", the transition probability matrix
pY (n,t) of the continuous-time finite-state Markov chain Xgm(t), the arrival
intensity matrix A% of the Markov-modulated Poisson process o (t), and the

jump amplitude Y are respectively given by

P (n,t) = P(n.1) (¢, (6")) exp(—Am‘ft), (3.8)
A" =Ag, (0°) = Aexp[eJ iy +%(930y)2] , (3.9)
and

ii.d.
Ykgm ~N(yy+9J0§,0§), (3.10)

where W7 (t) =W (t)—6 ot is changed by the Esscher transform, which means that
the investors receive a premium —6°c for the continuous diffusion risk at time t,
and then the Wiener process is affected by the measure change. Through the change of

measures, the risk-neutral transition probability matrix becomes P’ (n,t) with

20



transition rate matrix ¥ and arrival intensity matrix A”" . Under Qam, the jump
risk can be formulated by the Esscher transform intensity of the Markov-modulated
Poisson process. The arrival intensity matrix A’ = A¢, (0) is altered by the
Esscher transform, which means that the investors receive a premium ¢, (9’) for the
jump risk at time t, and thus the arrival intensity is affected by the measure change.
If ¢>Y(9J):1, the jump risk is not priced as in Merton (1976), and the arrival
intensity and distribution are unaffected by the measure change. Under Q% | if a

jump event occurs at time k , the jump amplitude Y, is normally distributed with

2

mean u, +60’c;

and variance o-§ . Appendix C presents the detailed proof.

Using a pair of solutions of Esscher parameters given by Equations (3.5) and

(3.6), we further get

W’ (1) =W (t) +[L_M]t , (3.11)
g
2 2
AP = Aexp —”—VZ+% | (3.12)
Ty
and
o 15
Yy ~N(—an,0yj, (3.13)
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where [ ] and exp are the market prices of the continuous

g

diffusion risk and jump risk at time t, respectively. In addition, under Q7" the jump

2

y and variance o

amplitude v is normally distributed with mean —%0' 2.

Consequently, the gold futures price dynamics under Q% is

dF@) ) " (1) i
m_rdwadwe (t)+d é (exp(Yk(’ )1)] (3.14)

where r=p—Ar+6°0° + A" " forall te[0,T].

3.3 Valuing American gold futures options

The valuation and optimal exercise of derivatives with discrete American-style
exercise features is one of the most important practical problems in option pricing.
These types of derivatives could be found within the commodity market. Assume that
we are interested in pricing American put options on gold futures, where the
risk-neutral gold futures price dynamics follow the stochastic differential Equations
(3.3) and (3.14). The sample paths of such dynamic processes are generated by LSM
simulations. For each path the optimal stopping point is determined using the
estimator function with F(wit t ,,...t,t4)=E, [Z]=& +b.F(t)+c, F2(t) ,
where Z represents the discounted cash flow of an option. In line with the option
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pricing theory, an optimal exercise policy will generate exactly one cash flow for each

path. The American gold put options are then priced by discounting the resulting cash

flows back to time zero, and averaging the discounted cash flows over all paths.
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Chapter 4

Empirical Analysesand Numerical Illustrations

To investigate that the gold futures price follows the RSJM, we perform a strict
empirical analysis for the gold futures returns. Applying the estimated parameters
from the RSJM, this dissertation further provides some numerical illustrations using
actual option market data to assess the impacts of both Merton measure and Esscher
transform on state-based jump-event premia. We also present a comparative analysis

between alternative stochastic processes with respect to their pricing accuracy.

4.1 Empirical results

The dataset used in the descriptive analysis of Table 4.1 consists of the daily gold
futures prices.? Analyzing returns from different periods makes us to examine the
potential effect of different jump behaviors over time. The skewness and kurtosis
coefficients suggest a leptokurtic distribution with positively skewed returns in the
gold futures market. In 2008 and 2009, we can observe extreme movements and
jumps in the daily returns, respectively. These can be regarded as the volatile state

(state 2), whereas other periods can be viewed as the ordinary state (state 1). Taking

2 The daily data are from Bloomberg and cover the period from 01/02/2007 to 12/31/2010.
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the gold futures returns that are over +5% in magnitude as an example, Table 4.1

shows that the mean frequency of the jumps in the entire period is 2.25, where the

mean frequencies of the jumps in state 1 and state 2 are 0 and 4.5, respectively. State 1,

therefore, is deduced as being below the long-term average jump activity. State 2 is

inferred as being above the long-term average jump activity. As shown in Table 4.1,

the period 2007 is in state 1, but the regime transitions to state 2 in the periods 2008

and 2009, and then transitions back to state 1 in the period 2010. A further implication

of the figures in Table 4.1 is that during the test period, the economy switches

between two states of jump rates, showing the characteristic that the state-dependent

nature of the jump dynamics.

Table 4.1 Descriptive statistics of the gold futures returns

Classification 2007 2008 2009 2010 Total
Trading days 251 253 252 252 1008
Mean 0.0007 —-0.0002 0.0008 0.0010 0.0006
Std. Dev. 0.0105 0.0191 0.0138 0.0101 0.0138
Skewness -0.5418 0.2982 0.2708 -0.6290 0.0925
Kurtosis 4.6612 5.0181 5.6249 5.0150 6.6019
Days exceeding +3% 5 22 7 3 37
Days exceeding +5% 0 8 1 0 9
Days exceeding +7% 0 1 1 0 2

Note: The descriptive statistics are reported for the gold futures returns from 2007 to 2010. This table
shows the number of days each year in which the gold futures yield a logarithmic return series over

3%, +5%,and +7% in magnitude.
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The previous analysis of Table 4.1 sheds doubts on the validity of the GBM
assumption. Motivated by these findings, we examine the ability of alternative
stochastic processes for modeling the gold futures prices. In the empirical analyses,
we employ the Black-Scholes model (BSM) as a benchmark for the actual data

analyzed. For simplicity, we assume that the hidden Markov chain X (t) has two
states: state 1 and state 2. This means that, an economy switches between the ordinary

and volatile states. The transition probability matrix of the two-state Markov chain

P, 1-Ry

1- P22 P22

P, P
X (t) is given by {Pﬂ Plz} :{
21 22

} . Due to the economic state is hidden

at time zero, the stationary distribution can be evaluated by the transition probability.

Therefore, the stationary distributions of state 1 and state 2 are 7; :\% iy and
1 2

n2=V1 respectively. Given the gold futures price dynamics defined in

vV,

Equation (2.5), we express the logarithmic return in discrete time as follows:

N, (At)

Y i x@=t
R(t)=u+cZ+ " : (4.1)

N, (At)

YY, if X(t)=2
k=1

where = (,u—%az —AKjAt with Ak =(pud+ Ppk)(4Q-1)), o=0cVAt,
Z~N(0,1), Y, ~N(u,,0%),and N,(At) isa Poisson process with the intensity rate

A in the interval time At when the Markov chain X (t) remains in state i. The

26



states and the jump arrivals are unobserved. We apply the EM algorithm (Lange,
19954, b) to calculate the maximum likelihood estimations. In the first step, given the
observed return data R and the former one-period parameters ®“™®, we compute
the conditional expectation of the log complete-data likelihood function as
r(e ,G)(k‘l)):E[logPr(R,X,N |®)|R,®‘k‘1)]. Then, for the second step, we
maximize the T'-function to use the parameter set as ®* =argmaxT'(© ,0*").
By the iteration and recursive computation of these two steps, the parameters
converge the I'-function to the local maximum in the incomplete-data likelihood
function. Applying the code of the EM algorithm and the complete-data information
matrix, we get the standard errors of parameter estimators by the SEM algorithm
(Meng and Rubin, 1991). Khalaf et al. (2003) combine bounds and Monte Carlo
simulation techniques to test the generalized autoregressive conditional
heteroskedasticity (GARCH) class of models with nuisance parameters. To determine
whether the JDM outperforms the BSM, and whether the data fit the RSJM better than

the JDM, we apply the likelihood ratio test as follows:

LRT = 2(InL,(©) - In Ly (©)) > 42, .. (4.2)

where L (®) represents the likelihood function under the hypothesis H, for
m={0,1}, and d denotes the difference of the parameters between the H, and
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H, constraints. If LRT> y§, ., H, is rejected. The respective null hypotheses are

that the BSM and JDM hold.

The estimated parameters and corresponding standard errors (in parentheses) for
each one of the alternative stochastic processes, and the likelihood ratios under study
are reported in Table 4.2. The results provide several interesting findings. In the case
of the JDM vs. RSIJM, we can determine the value of d by the difference in the
number of parameters between these two models. At the confidence level of
1-a =0.95, the critical value for the aforementioned test is 7,4 =9.49. As shown
in Table 4.2, we can observe that the RSIJM outperforms the JDM by the likelihood
ratio LRT, of 108.03 > 9.49 at the 5% statistical significance level, implying that the
addition of the Markov-modulated Poisson process clearly dominates the pure Poisson
process, that is, there exists the regime-switching jump feature due to the
state-dependent nature of the RSJM. By a similar procedure, we find that the JDM
clearly dominates the BSM by the likelihood ratio LRT, of 126.68> 2, =7.82
at the 5% statistical significance level, as shown in Table 4.2. In addition, these two
transition probabilities of the gold futures market for the RSJM are almost 1,
emphasizing that the economy stays in each state for a period of time and then

transitions to other. Chang et al. (2013) indicate when the sum of these two transition

28



probabilities is nearly 2, the autocorrelation of volatility (volatility clustering) is most

significant. Table 4.2 shows that the sum of these two values is nearly 2, and we

therefore find the volatility clustering is substantial, as in Chang et al. (2013). The

mean and standard deviation of the gold futures returns for the RSJM are 0.0020 and

0.0069, respectively. The additional jump component prescribes a drift of —0.0011 and

a volatility of 0.0105. The arrival intensity is found to be 0.6277 in state 1 and 3.7508

in state 2, which clearly demonstrates different arrival rates in different states. These

findings indicate that the gold futures price has a GBM structure with

Markov-modulated Poisson processes, that is, the jumps are subject to

regime-switching movements that cannot be explained by existing jump-diffusion

processes, such as in Merton (1976), Amin (1993), and Kou (2002). They are

consistent with the findings in the descriptive analysis of Table 4.1, namely the

non-normality of returns and the existence of changing jump rates according to the

economic states.
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Table 4.2 Estimated results of continuous-time models

Parameter BSM JDM RSIM

P, 0.9969 (0.0028)
P, 0.9879(0.0117)
u 0.0006 (0.0004) 0.0021 (0.0005) 0.0020 (0.0004)
Hy —0.0019 (0.0008) —0.0011 (0.0005)
o 0.0138(0.0003) 0.0067 (0.0003) 0.0069 (0.0006)
oy 0.0130(0.0003) 0.0105 (0.0011)
A 0.8244 (0.2611) 0.6277(0.1848)
A 3.7508 (1.1795)
LRT, 126.68

LRT, 108.03

Note: This table presents the empirical results of dynamic models, reporting the estimated parameters
and corresponding standard errors. The estimation settings for the BSM and JDM/RSIJM are
determined via the maximum likelihood (ML) approach and EM algorithm, respectively. The standard
errors of parameter estimators for the BSM and JDM/RSJM obtained by the ML approach and SEM
algorithm, respectively, are reported in parentheses. LRT, represents the likelihood ratio test for
maximum likelihood functions with the null hypothesis that there is no jump event, that is, the dynamic
model is BSM. LRT, shows the likelihood ratio test for maximum likelihood functions with the null
hypothesis that there is no switching regime, that is, the dynamic model is JDM. Performance is

evaluated in terms of both the statistical accuracy and likelihood ratio test.

Table 4.3 presents the mean, variance, skewness, and kurtosis for the original
data and alternative stochastic processes. We further compare these model-determined
values with empirical results. To investigate the leptokurtic and asymmetric features
in gold futures returns, we use the formulas for the skewness and kurtosis of the JDM
(Becker, 1981; Ball and Torous, 1983) and of the RSIM (Chang et al., 2013). As
shown in Table 4.3, the mean and variance for the original data and alternative

stochastic processes are the same. Comparing with the original data, the RSIM is
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better than BSM and JDM in terms of kurtosis.

Table 4.3 Distributional statistics for data and continuous-time models

Classification Data BSM JDM RSIM

Mean 0.0006 0.0006 0.0006 0.0006
Variance 0.0002 0.0002 0.0002 0.0002
Skewness 0.0925 0 -0.3076 —0.3966
Kurtosis 6.6019 3 5.1067 6.0758

Note: This table reports the distributional statistics for the original data and continuous-time models.

Figure 4.1 (a) plots the dynamic process of daily gold futures price data. Figure

4.1 (b) apparently exhibits different arrival rates with changing volatility over the test

period. The time-varying volatility is captured by the RSIJM in the form of

regime-switching behavior, that is, the fluctuating periods of high and low arrival

rates. Using the Baum-Welch algorithm adopted by Chang et al. (2013), as shown in

Figure 4.1 (c), we find that the first 150 and the last 450 days of the period seem to

predominantly characterized by a low arrival rate (the probability of state 1 is close to

1), while the other days are characterized by a high jump intensity (as in state 2). Our

test period ends with a period of high arrival rates, corresponding to the U.S.

subprime financial crisis of 2008. Figure 4.1 (d) shows the probability of jumps in a

period, when there exists jumps, the probability is nearly 1. Compared with the Figure

4.1 (b), the aforementioned turmoil is an example of such jump-sensitive periods.
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Figure 4.1 Graph of (a) gold futures prices, (b) logarithmic returns, (c) State probability, and (d) Jump
probability
Note that the dotted lines in (b) denote the gold futures returns over +5% in magnitude are jumps. (c)
shows the probability of being in state 1, whereas the economy is in state 2 when the probability is

Zero.

Regarding the so-called volatility clustering, we make use of the autocorrelation
function of the squared asset returns calculated by Chang et al. (2013) to investigate
this phenomenon. Figure 4.2 shows a substantially positive autocorrelation in the
squared logarithmic returns of gold futures in which the trend steadily declines as the
lag length increases. The RSJM therefore captures not only the existence of volatility
clustering but also the magnitude and decay of this phenomenon. Under the RSIM
framework, the volatility clustering occurs from the jump clustering caused by the

jump arrival intensity changes over time according to the states of an economy. These
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empirical results suggest that the RSIM provides the adequate description for the gold
futures returns. It is an evidence that the model addresses the previously mentioned
empirical characteristics, including the presence of jumps, leptokurtosis, asymmetry,
and volatility clustering phenomena. The RSJM overcomes the shortcomings of GBM
and jump-diffusion processes (Merton, 1976; Amin, 1993; Kou, 2002) for modeling
the underlying asset price. This dynamic model will be general enough to cater for

price jumps more appropriate for gold futures.
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Figure 4.2 Model autocorrelation of the squared logarithmic returns
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4.2 Pricing performance

In this section, we evaluate the pricing performance of in-sample and out-of-sample
periods using actual option market data® from the Commodity Exchange (COMEX).
As a benchmark, we apply the BSM to price American put options on gold futures.
The one-year U.S. treasury bill rate is used as a proxy for the risk-free rate. The
relative mean square errors (RMSEs) are adopted for model evaluation. Due to actual
data limitations, an analysis across moneyness levels is not possible. The parameters
of each model are calibrated over periods of four years and then the estimated
parameters are used to evaluate the pricing performance of in-sample and

out-of-sample periods for each option.

The pricing errors presented in Table 4.4 correspond to RMSEs across both
in-sample and out-of-sample data analyzed. On the in-sample analysis of the option
pricing models in terms of RMSEs. The results show that the American gold put
options are more accurately priced using the RSIJM under the Esscher measure. For
K =780 and K =800, the pricing errors of the RSIJM under the Esscher measure

are just slightly higher than those under the Merton measure in terms of RMSEs.

® The option data are from Bloomberg. These data correspond to the gold futures prices and cover
the period between 10/01/2010 and 03/31/2011 with the expiration date 05/25/2011.
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Taking the strike price K =860 as an example, the largest improvement offered by

the RSJM under the Esscher measure over the Merton measure is 0.0411 in the

reduction of RMSEs. Turning now to the out-of-sample analysis, we find a similar

picture. The results show that the RSIJM under the Esscher measure is again more

accurate than under the Merton measure in pricing American gold put options. For

K =780, the pricing error of the RSIM under the Esscher measure is just slightly

higher than that under the Merton measure in terms of RMSEs. When K =840, the

improvement is largest for the RSJM between the Esscher and Merton measures with

a reduction of 0.0672 in terms of RMSEs.

Through the analysis of in-sample and out-of-sample pricing errors with different

strike prices K, these numerical illustrations indicate that pricing errors under the

RSJIM are all smaller than those competing models in terms of RMSEs. Specifically,

the reduction of the RMSEs between the JDM and RSJM is more substantial than that

of the RMSEs between the BSM and JDM. One can infer that for this reason, the

Markov component contributes more to the superior pricing performance rather than

the pure jump process. The numerical results show that the RSJM is more accurate

than the BSM and JDM in pricing American gold put options. In other words, whether

the Merton measure or Esscher transform is employed to derive the risk-neutral gold
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futures price dynamics, the RSIJM strongly outperforms the BSM and JDM. Overall,

the evidence presented seems to suggest that it is worth accounting for

state-dependent jump risks when pricing American put options on gold futures. Once

more data become available, it is necessary to engage a more extensive comparative

analysis between alternative stochastic processes, not only with respect to their

pricing accuracy but also in terms of their hedging performance.

Table 4.4 In-sample and out-of-sample pricing errors of American gold put option pricing models

BSM JDM RSIM

K Merton measure Esscher measure

In-sample pricing errors (%) (Observations=64)

780 0.9700 0.9659 0.3549 0.3583
800 0.9587 0.9542 0.2910 0.2935
820 0.9429 0.9376 0.3176 0.3008
840 0.9231 0.9174 0.3512 0.3202
860 0.8985 0.8930 0.3836 0.3425

Out-of-sample pricing errors (%) (Observations=62)

780 0.9971 0.9955 0.7050 0.7089
800 0.9945 0.9925 0.7622 0.7423
820 0.9909 0.9882 0.8288 0.8100
840 0.9859 0.9822 0.9100 0.8428
860 0.9796 0.9737 0.8454 0.7900

Note: This table presents the RMSEs of various option pricing models. We calibrate each model in the
period from 01/03/2007 to 12/31/2010 and then use the estimated parameters to evaluate the in-sample
performance in the period from 10/01/2010 to 12/31/2010 as well as the out-of-sample performance in
the period from 01/03/2011 to 03/31/2011. The RMSEs are estimated by minimizing the sum of the
squared pricing errors between the LSM-simulated prices and the market prices (divided by the market
prices) for each option. The RMSE (pricing error) expressed in percentage. Pricing performance is

evaluated for the aggregate sample on the basis of the RMSEs.
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Chapter 5

Conclusions and Futur e Extensions

According to the empirical analysis of the gold futures returns, we verify the existence
of unanticipated jump events with different jump rates of gold futures prices in
different time periods. The empirical results show that the gold futures price is better
approximated by a continuous-time, Markov regime-switching jump-diffusion process.
Compared with the standard jump-diffusion processes, the main advantage is that we
incorporate state-dependent jump risks into the dynamic model. This stochastic
process also appropriately characterizes the leptokurtosis, asymmetry, and volatility
clustering across the empirical data analyzed. In the light of the empirically favored
RSJM for the gold futures price under the different jump risk considerations, we adopt
the Merton measure and Esscher transform to derive the risk-neutral gold futures price
dynamics. After determining such dynamic processes, the values of American gold
futures options are approximated using the LSM method. In this dissertation, we
empirically investigate the in-sample and out-of-sample pricing performance of the
LSM algorithm for American gold futures options with alternative stochastic
processes, including GBM, JDM, and RSJM. The numerical results indicate that

whether the Merton measure or Esscher transform is employed to derive the
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risk-neutral gold futures price dynamics, the RSIJM strongly outperforms the BSM

and JDM. As a consequence, we find that the Markov-modulated Poisson process is

more accurate than the pure Poisson process when valuing American gold futures put

options, and jump risks implied by the RSJM have a more significant impact on the

option prices. To some extent, the comparison has indicated the importance of

incorporating state-dependent jump risks into the gold futures price model.

This dissertation has several possible extensions and potential improvements.

First, due to the discrete nature of jump risks, the riskless hedging with jump risks

under an incomplete gold market remains an important challenge. Second, we might

employ an alternative distribution instead of a log-normal distribution used in the

jump amplitude. Third, it is interesting to examine how the changing transition rate

impacts the transition probability under the measure change. Fourth, more simple, yet

powerful numerical algorithms are required to evaluate the American-style options.

As a potential future work, we might consider incorporating other Markov

regime-switching market parameters, such as interest rates, the appreciation rate and

the volatility of the underlying asset price, the jump amplitude of a compound Poisson

process, into the dynamic model studied in this dissertation. Comparing the effect of

risk premia on the option prices may be a new interesting topic.
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Appendix A: Distributional properties of RSIM

under o~

Proof. Based on Equation (3.1), apply the Girsanov theorem and by the Itd's rule, we
immediately get that W™ (t) = W(t)—l—[ - ]t is a Wiener process under QM . We
then denote the moment-generating function of the random variable Y, by
¢ () =E[exp(Y,)]=r+1. This does not depend on the index k because
{Y, :k=12,...} all have the same distribution. Then, we have

n
2%

k=1

exp d(t) =nP(®(t) =n)

=P ((t) :0)+iE
n=1

n [

— S (Elexen)]) P=35" " (6 @) Ry (n)

n=0 n=0 i=1 j=1
=exp(Axt), (A1)

where 7, denotes the stationary distribution in state i. This limiting distribution can

| . . |

be computed by :Zkzl,kijdjkjﬂ-j along with the constraint ijlﬂ'j =1.
d(t) . . . .

Furthermore, we note that ZHYK—Amt is a martingale at time t. Given

®(t) =n, the Radon-Nikodym derivative of the transition probability can be written

as
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dQP)/ll’ob.

dP (A2)

- )
prob. o(H)=n

then we get dP™(n,t)=dP(n,t), where P™(n,t) denotes the transition probability
matrix under Q" . Moreover, we use Equation (2.2) and its unique solution given by

Equation (2.3). Letting PM (n,t) = P(n,t), we can get
P (¢ =) P (nt)¢"=> "P(n,t)¢" =P"((,1)
n=0 n=0

=exp((T—@1-QA)t), (A.3)

Therefore, the transition rate matrix ¥ - of the transition probability matrix P™ (n,t)

and the arrival intensity matrix A™ = A are unchanged by the measure change.

Finally, we investigate the jump amplitude, where {Yl,Yz,...,Yn} are independently
identically distributed random variables. Thus, the Radon-Nikodym derivative of

each specific jump amplitude can be set as

M
Q) _ (A4)
dR, |ex

t

2
Y, —
then we obtain dQ)' = dPR, :;exp —("Z—Z”) .Under Q" if a jump event

277(7y Oy

occurs at time k, the jump amplitude Y™ is normally distributed with mean Hy
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and variance a§ . Furthermore, under Q" , the density function of each specific jump
amplitude Y is fM(y)= f,(y), and therefore the density function is unchanged

by the change of measures.
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Appendix B: Solving the Esscher parameters

Proof. Let E” denote the mathematical expectation operator with respect to the
Esscher measure Q7' equivalent to P. It is possible to select the risk-neutral
Esscher measure as the measure Q7 such that the discounted gold futures price
process is a Q7 -martingale. This is obtained by determining the Esscher parameters
0° and 6’ as solutions of E” [exp(—rt) F(t)|R,|= F(0) . Applying Equation (3.4),

we have

em
F(O):exp(—rt)EemlF(t) Fy|=exp(—rt)E d(?p F(t)|F,
1 ) (1) dQBm
= F(0)E |exp [,LL—F—EU —An]t+aW(t)+;Yk P

= F(0) exp[[y— r —%02 —Aﬁ]t +%((l+ QC)U)ZI—%(QCU)Z t]

-exp

A[;{(WJ) _ ]t] (B.1)

From the mutual independence of random shocks W(t), ®(t), and Y,, and then the

martingale condition holds if and only if the Esscher parameters #° and @’ satisfy
p—r—Ak+6%2=0 (B.2)
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and
L2 10762 =0 B.3
uy—l—zay—l— oy, =0, (B.3)

for all te [O,T]. Therefore, we can define a pair of solutions of Esscher parameters

for the martingale condition by Equations (3.5) and (3.6).
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Appendix C: Distributional properties of RSIM

under o”

Proof. By Equation (3.4), apply the Girsanov theorem and from the mutual

independence of random shocks W(t) , @(t), and Y,, we can obtain that
W (t)=W(t)—6 st is a Wiener process under Q7 . Next, we denote the
moment-generating function of  the random variable Yy by

@(93):E[exp(03Yk)]:n93 +1. This does not depend on the index k because

{Y, :k=12,...} all have the same distribution. Then, we have

(t) 00 n
E|exp eJiYk =P(®()=0)+> E|exp|0’) Y, |[®(t) =n[P(®(t) =n)
k=1 n=1 k=1
o0 n o0 | | N
ZZ(E[exp(erk)D P =53 "m (& (%)) Py(n.t)
n=0 n=0 i=1 j=1
=exp (Am‘ﬂ t) , (C.1)

where 7, denotes the stationary distribution in state i. This limiting distribution can

be computed by :ZI

. . |
;a7 along with the constraint ijlﬂ'j —1.

. @ .o . . .
Specifically, we note that ejzki)Yk—Angt is a martingale at time t. Given

®(t) = n, the Radon—-Nikodym derivative of the transition probability can be set as
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de:ob.

s = (s (@) exp(—An(’Jt) , (C.2)

d(t)=n

then we get dP’" (n,t):dP(n,t)(qﬁY (HJ))n exp(—A/sHJt), where P?"(n,t) denotes
the transition probability matrix under Q%" . We use Equation (2.2) and its unique
solution given by Equation (2.3). Letting P’ (n,t) = P(n,t)(q§Y (GJ)>n exp(—AFth),

we can get

P ()= P(n1) (6 (07)) exp(-Ax"t)¢" = S P (o (07)) exp(—Ar"t]
n=0 n=0
= exp((£ = (1= A, (0°))t). (C3)

where the transition rate matrix W of the transition probability matrix = (n,t) is

unaffected by the Esscher transform. Under Q7" the jump risk can be formulated by

the Esscher transform intensity AT = Agy (07) = Aexp

1 2] .
f)aﬂﬁa(mgy) ] Finally,
we investigate the jump amplitude, where {Yl,Y2 ..... Yn} are independently
identically distributed random variables. Hence, the Radon-Nikodym derivative of

each specific jump amplitude can be written as

_ e (HJYk) C4)

FOE exp(@JYk) Fx] |

dQy”
dR,
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exp|— (Yk _<MV +6JU§))2

2
27m§ 20,

then we obtain dQ! = . Furthermore, under the

physical probability measure P, the density function of each specific jump amplitude

Y, is f,(y). Through the change of measures, under Q%" the density function of

each specific jump amplitude Y,fm is ffm(y): fY(y)~d£)Y :
Y [RX
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