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 I 

中文摘要 

本文實證探討黃金期貨報酬率的特性並在標的黃金期貨價格遵循狀態轉換

跳躍擴散過程時實現美式選擇權之評價。在這樣的動態過程下，跳躍事件被一個

複合普瓦松過程與對數常態跳躍振幅所描述，以及狀態轉換到達強度是由一個其

狀態代表經濟狀態的隱藏馬可夫鏈所捕捉。考量不同的跳躍風險假設，我們使用

Merton測度與 Esscher轉換推導出在一個不完全市場設定下的風險中立黃金期貨

價格動態過程。為了達到所需的精確度，最小平方蒙地卡羅法被用來近似美式黃

金期貨選擇權的價值。基於實際市場資料，我們提供實證與數值結果來說明這個

動態模型的優點。 

關鍵詞：美式黃金期貨選擇權、狀態轉換跳躍擴散過程、Merton 測度、Esscher

轉換、最小平方蒙地卡羅法 
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 II 

Abstract 

This dissertation empirically investigates the characteristics of gold futures 

returns and achieves the valuation of American-style options when the underlying 

gold futures price follows a regime-switching jump-diffusion process. Under such 

dynamics, the jump events are described as a compound Poisson process with a 

log-normal jump amplitude, and the regime-switching arrival intensity is captured by 

a hidden Markov chain whose states represent the economic states. Considering the 

different jump risk assumptions, we use the Merton measure and Esscher transform to 

derive risk-neutral gold futures price dynamics under an incomplete market setting. 

To achieve a desired accuracy level, the least-squares Monte Carlo method is used to 

approximate the values of American gold futures options. Our empirical and 

numerical results based on actual market data are provided to illustrate the advantages 

of this dynamic model. 

Keywords: American gold futures option; Regime-switching jump-diffusion process; 

Merton measure; Esscher transform; Least-squares Monte Carlo method 
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Chapter 1                       

Introduction 

Gold is a precious metal, which in recent years is considered to be an investment tool 

alternative to equity and bond markets. It provides similar functions as money in that 

it acts as a preserver of wealth, a medium of exchange and a unit of value. Unlike 

other commodities, gold is a special asset with renewable, relatively transportable, 

universally acceptable and easily authenticated. The unique and diverse drivers of 

gold price behavior not highly correlate with changes in other financial assets. As a 

consequence, this precious metal can contribute in a saving role by acting as a type of 

insurance against extreme movements and jumps in the value of traditional assets 

during times of economic and market stress (Capie et al., 2005; Baur and Lucey, 2010; 

Baur and McDermott, 2010; Reboredo, 2013; Zagaglia and Marzo, 2013). Gold is a 

liquid asset, continuously quoted on spot and futures markets and easy to trade. In 

addition to Beckers (1984) and Ball et al. (1985) empirically investigate the gold 

options market under the Black–Scholes framework, others, for instance, Ogden et al. 

(1990) study gold spot and futures options. It is well known that the presence of 

jumps in the underlying asset price can have significant implications on pricing 

derivatives, but these aforementioned papers do not address such jump phenomena. 
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The increasing number of jump events, especially after the subprime financial crisis 

of 2008, has created large fluctuations in the gold futures prices and related 

derivatives (e.g., American gold futures options). For the market development, it is 

crucial in capturing the dynamic jump process appropriately and evaluate American 

gold futures options corresponding to the changing prices of gold futures. 

Most exchange-traded option contracts are American style and therefore, many 

numerical methods have been presented attempting to evaluate American options, 

including the lattice (Cox et al., 1979), finite difference (Brennan and Schwartz, 1977; 

Hull and White, 1990), and Monte Carlo simulation methods (Boyle et al., 1997). 

Increasing the number of steps comes at the cost of exponential growth in the size of 

the lattice pricing methods. Longstaff and Schwartz (2001) propose an algorithm for 

pricing American options called least-squares Monte Carlo (LSM) approach. This 

technique proceeds by simulating forward paths using the Monte Carlo simulation, 

and then performs backward iterations by applying least-squares approximation of the 

continuation function over a collection of basic functions. This algorithm is simple to 

implement within existing Monte Carlo frameworks, and has the additional 

advantages that the continuation functions are constructed explicitly and it is easy to 

calibrate to existing market prices. Therefore, we adopt this approach to evaluate 
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American gold futures options. 
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Figure 1.1 Time series (top panel) and logarithmic returns (bottom panel) of daily gold futures prices 

Note that the dotted lines in the bottom panel denote the gold futures returns over 5%±  in magnitude 

are jumps. The gold futures data is the one month forward contract attained from the continuous futures 

series from Datastream with switchovers at the first day of a new month. The futures contracts are the 

daily CMX-Gold-100-Oz. 
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The top panel of Figure 1.1 draws some significant price jumps of gold futures in 

the daily data.1

                                                 

1 The empirical data are from Datastream and cover the period from 01/01/1979 to 12/31/2010. 

 In particular, it shows that there are larger jumps (returns) in several 

time periods. In the oil crisis of 1979 and subprime financial crisis of 2008, for 

example, gold futures prices had larger jumps. The empirical data have revealed that 

the geometric Brownian motion (GBM) is not completely consistent with the reality, 

that is, the jumps do exist in the gold futures price realizations. Hence, incorporating 

sudden random shocks into a dynamic model is necessary and significant (Carr et al., 

2002; Eraker et al., 2003; Eraker, 2004; Maheu and McCurdy, 2004). In line with the 

changing gold futures returns in the bottom panel of Figure 1.1, we could identify two 

regimes of the gold futures market. The first state is defined as the relatively 

low-volatility regime and can be viewed as the ordinary state. The second state is 

defined as the relatively high-volatility regime and can be regarded as the volatile 

state. In addition, we also find that, in the gold futures market, the bottom panel of 

Figure 1.1 exhibits different arrival rates of jump events in different time periods. It is 

an empirical fact that there exists the so-called jump and volatility clustering in the 

logarithmic return series of gold futures prices caused by a period of time of high (low) 

arrival rates tend to be followed by a period of time of continued high (low) arrival 

rates. Nevertheless, the existing jump-diffusion processes, such as in Merton (1976), 
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Amin (1993), and Kou (2002), are unable to address the phenomenon of volatility 

clustering. Duan et al. (2006) evaluate options when there are jumps in the pricing 

kernel and correlated jumps in asset prices and volatilities. The models capture 

leptokurtosis and volatility clustering but do not show the regime-switching 

phenomenon. Chan and Maheu (2002) propose a time-varying Poisson jump model to 

describe the jump dynamics of the stock prices in the discrete time circumstance. In 

the light of our empirical observations in Figure 1.1 with economic intuition, the 

change of gold futures prices represents that the economy stays in each state for a 

period of time and then transitions to the other, as well as the jump intensity changes 

over time according to the different regimes of the economy. 

In order to incorporate both unanticipated jump events and regime-switching 

arrival rates in the oscillating gold futures market simultaneously, we model the gold 

futures price dynamics using a regime-switching jump-diffusion model (RSJM) 

proposed by Chang et al. (2013). Under such a model, the jump events are described 

as a compound Poisson process with the log-normal jump amplitude setting applied 

by Merton (1976), and the regime-switching arrival intensity is governed by a 

continuous-time finite-state Markov chain. The states of the Markov chain can be 

interpreted as the hidden states of an economy. The regime-switching models are used 
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to describe the asset price dynamics and are applied for option pricing. Elliott et al. 

(2007) investigate the option prices under a generalized Markov regime-switching 

jump-diffusion economy for the use of the Esscher transform employed by Elliott et al. 

(2005) and Elliott and Osakwe (2006) for valuing options under a regime-switching 

environment. Elliott and Siu (2011) incorporate structural changes in economic 

conditions in asset price dynamics and American option valuation. None of these 

discussions provide the empirical tests for the observed features and model fit of their 

dynamic processes. In this dissertation, we demonstrate that the dynamic model 

describes the existence of jump events, leptokurtosis, asymmetry, and volatility 

clustering for the gold futures returns, and illustrate the presence of regime-switching 

arrival rates and jump clustering, and verify the superior empirical fit over competing 

models. 

The market is incomplete in such a Markov regime-switching jump-diffusion 

economy, and we therefore need to select a pricing kernel for option valuation. 

Previous researches empirically illustrate that gold is either a zero or negative beta 

asset (McCown and Zimmerman, 2006; McCown and Zimmerman, 2007; Baur and 

Lucey, 2010; Baur and McDermott, 2010). This means that, under the CAPM 

assumptions, the jump component of the gold futures returns shows non-systematic or 
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systematic risk. Thus, we make use of two specific approaches for choosing the 

martingale pricing measure to derive the risk-neutral gold futures price dynamics. 

First, we assume that the jump component of the gold futures returns presents 

non-systematic and diversifiable risk, that is, under the assumption that the jump risk 

is not priced, as in Merton (1976). Second, we relax this assumption to allow for the 

jump risk, regarding which as systematic and non-diversifiable. Then, the Esscher 

transform technique developed by Gerber and Shiu (1994, 1996) is considered to 

determine a risk-neutral pricing measure. After determining such martingale dynamics 

of the gold futures prices, we use the LSM algorithm to approximate the values of 

American gold futures options. Considering the jump events and economic states are 

unobserved when estimating the parameters of the RSJM, the model parameters are 

estimated using the expectation maximization (EM) algorithm (Lange, 1995a, b) and 

the standard errors of parameter estimators are obtained using the supplemented 

expectation maximization (SEM) algorithm (Meng and Rubin, 1991). From the 

empirically estimated parameters in the dynamic model and the LSM-simulated 

option prices, we show that the model is more accurate than competing models in 

pricing American gold futures put options. 

The main results from this dissertation can be summarized as follows. First, we 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 

 8 

empirically analyze the gold futures returns for understanding the market operation 

and the risks involved. Our findings are valuable for gold futures price modeling and 

for other gold derivative asset pricing. Second, we derive the risk-neutral gold futures 

price dynamics via the Merton measure and Esscher transform under the different 

jump risk settings. Finally, we use actual market data to investigate the pricing 

performance of the LSM method for American gold futures put options and illustrate 

the importance of incorporating state-dependent jump risks into the dynamic price 

model on gold futures. 

The remainder of this dissertation is organized as follows. Chapter 2 presents the 

model setting and numerical method. Chapter 3 illustrates the measure change of two 

specific approaches and the valuation of American gold futures options. Chapter 4 

discusses the results of empirical analyses and numerical illustrations. Chapter 5 

presents the conclusions of this dissertation. 
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Chapter 2                            

Model Framework and Pricing Method 

The empirical data of Figure 1.1 demonstrate that the frequency of sudden random 

shocks can be significantly different under different regimes of the gold futures price. 

Based on these observations, it seems inadequate to assume that the jump arrival 

intensity follows a pure Poisson process, and we therefore use a Markov-modulated 

Poisson process to model the jump risk components. For valuing American gold 

futures options, the LSM method is adopted to approximate the option values by 

simulation when the underlying gold futures price follows a continuous-time, Markov, 

regime-switching jump-diffusion process. 

2.1 Markov-modulated Poisson process 

The Markov-modulated Poisson process ( )tΦ  is a Poisson process in which the 

underlying state is governed by a hidden Markov chain ( )X t  (Last and Brandt, 

1995). More precisely, instead of the constant (average) arrival intensity under a 

Poisson process used in the Merton-type jump-diffusion model (JDM) (Merton, 1976), 

the jump component of the gold futures price is set to be a Markov-modulated Poisson 

process whereby the intensity process of jump events is different in different states. 
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The regime-switching arrival intensity ( )X t  of ( )tΦ  is modulated by ( )X t , with 

the transition function ( )ijP t  on the finite state space { }X= 1,2,..., I . For , Xi j∈ , 

we denote the transition rate ( , )i j  from state (0)X i=  to state ( )X t j=  of ( )tΦ  

as 

,

( , ),     ,
( , ) ( , ),   ,  

j j i

i j i j
i j i j otherwise






  
                                (2.1) 

The notation ( ( , ))I Ii j     represents the I I×  matrix of the transition rate with 

diagonal elements 
1,

I
ii ij ij j i

v 
 

  . iv  is the departure rate at which the 

process leaves state i . Since the Markov chain has a finite number of states, the 

Poisson arrival intensity takes discrete values corresponding to each state. From the 

Markov structure of ( )X t , Last and Brandt (1995) give the moment-generating 

function for the joint distribution function of ( )X t  and ( )tΦ  via the Laplace 

inverse transform as follows: 

*

0

( , ) ( , ) n

n

P t P n t 




 , 0 1ζ≤ ≤ ,                                 (2.2) 

where ζ  is a complex number. ( , ) ( ( , ))ij I IP n t P n t   represents the I I×  

transition probability matrix and ( , ) ( (0) , ( ) , ( ) )ijP n t P X i X t j t n      denotes 

the transition probability with n  jump times from state (0)X i=  to state ( )X t j= . 
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Here, { }0( ,0) (1 )ijnP n D== , where 1ijD =  if i j=  and 0, otherwise. Using the 

Kolmogorov forward equation, the derivative of ( , )P n t  becomes 

 1( , ) ( ) ( , ) 1 (n 1,t)n
d P n t P n t P
dt      . Thus, the unique solution of *( , )P t  

can be obtained as 

  *( , ) exp (1 )P t t     ,                                   (2.3) 

where ( )( )X t I I   denotes the I I  diagonal matrix of the arrival intensity with 

diagonal elements i . The exponential power series, are given as 
0 !

n
A

n

Ae
n




  

for any I I×  matrix A  and 0 ( )ijA D= . Applying the Laplace inverse transform of 

Equation (2.2) and the unique solution of Equation (2.3), we have the joint 

distribution of ( )X t  and ( )tΦ  at time t  with the following equation: 

*

0
( , ) ( , )

!

n

nP n t P t
n 


 





,                                      (2.4) 

2.2 Gold futures price modeling 

Let ( ), ,F PΩ  be a complete probability space, where P  is the physical probability 

measure. For each [ ]0,t T∈ , we consider that the sample path for the gold futures 

price is continuous except on finite points in time, and the arrival intensity of jump 

events depends on the hidden states of an economy. The RSJM for the underlying 
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gold futures price at time t , ( )F t , can be written as 

    
( )

1

( ) ( ) exp 1
( )

t

k
k

dF t dt dW t d Y
F t

  




          
 ,                 (2.5) 

where the appreciation rate µ  and the volatility σ  are constants and ( )W t  is a 

Wiener process under P . Specifically, the jump risk components are indicated by the 

Markov-modulated Poisson process ( )tΦ  with the arrival intensity matrix 

( )( )X t I I  , and the jump amplitude is supposed to follow a log-normal 

distribution, as in Merton (1976). { }: 1, 2,...kY k =  are the jump amplitudes, which 

are assumed to be independently identically distributed non-negative random 

variables with the density function ( )Yf y . If a jump event occurs at time k , the 

jump amplitude kY  is normally distributed with mean yµ  and variance 2
yσ . As a 

consequence, the mean percentage jump amplitude of the gold futures price is 

  21exp 1 exp 1 (1) 1
2k y y YE Y   

            
. In Equation (2.5), we assume 

that all random shock processes ( )W t , ( )tΦ , ( )X t , and kY  are mutually 

independent. 

2.3 Least-squares Monte Carlo approach 

Longstaff and Schwartz (2001) show that an American option can be evaluated using 
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the LSM technique to achieve a desired accuracy level. This advantage supports us to 

use the LSM approach for pricing American gold futures options under the RSJM, in 

contrast with the shortcomings of the lattice pricing methods. Let ω  denote a 

sample path of the underlying asset price generated by the Monte Carlo simulation 

over a discrete set of τ  exercise times 1 20 t t t T     . The continuous 

exercise property of an American option is approximated by taking sufficiently large 

τ . Let ( ), ; ,s t TC ω  denote the path of cash flows generated assuming the option is 

not exercised at or before time t  and the option holder follows the optimal exercise 

policy for all subsequent ( ],s t T∈ . At maturity, the investor exercises the option if it 

is in the money. At time kt  prior to expiration, the option holder must decide whether 

to exercise at that point or to continue and revisit the decision at the next time point. 

Here, although the option holder knows the immediate exercise payoff, he has no 

exact idea of the expected cash flows from continuation. According to the 

no-arbitrage pricing theory, ( ); kF tω , the continuation value at time kt  for path ω , 

is formally given by 

      
1

; exp , ; , ; ,
k

Q
k j k j k t

j k

F t E r t t C t t T F


  
 

 
   
  
 ,               (2.6) 

where  , ;j kr t t  is the risk-free discount rate, Q  is a martingale pricing measure, 
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and the expectation of the cash flows is taken conditional on the information set 
ktF  

at time kt . Supposing the continuation value is estimated, we can decide whether it is 

optimal to exercise at time kt  or continue by comparing the immediate exercise 

value with the estimate of the continuation value. The procedure is repeated until 

exercise decisions have been determined for each exercise point on every path. Thus 

by estimating the conditional expectation function for each exercise date, a complete 

specification of the optimal exercise strategy can be obtained along each path. Once 

the exercise strategy has been estimated, the valuation of an American option is 

approximately achieved. 
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Chapter 3                              

Valuation of American Gold Futures Options in 

a Markov Regime-Switching Jump-Diffusion 

Economy 

The security economy described by Equation (2.5) is incomplete, meaning that under 

the assumption of no arbitrage opportunities in this market, there are infinitely 

equivalent martingale measures with which to price options. Therefore, we need to 

determine a risk-neutral pricing measure Q , under which the gold futures prices 

discounted at the risk-free rate are Q -martingales. In order to reflect the argument of 

previous studies that gold is either a zero or negative beta asset (McCown and 

Zimmerman, 2006; McCown and Zimmerman, 2007; Baur and Lucey, 2010; Baur 

and McDermott, 2010), we consider the different assumptions for a jump risk, and 

then use the Merton (1976) measure and the Esscher transform adopted from Gerber 

and Shiu (1994, 1996) for the RSJM to select the martingale pricing measure such 

that risk-neutral gold futures price dynamics are obtained. 
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3.1 Merton measure for the Markov regime-switching 

jump-diffusion process 

In this section, we follow the assumption of a diversifiable jump risk made by Merton 

(1976), which implies that no premium is paid for such a risk. We then use the 

Merton's approach for the RSJM to identify a risk-neutral pricing measure by 

changing the drift of the Wiener process but leaving the other ingredients unchanged. 

To determine the martingale pricing measure, we decompose the gold futures 

logarithmic return  ( ) log ( ) / (0) ( ) ( )Z t F t F C t J t    into a continuous diffusion 

part 21( ) ( )
2

C t t W t   
      

 and a jump part 
( )

1
( )

t
kk

J t Y



 , for all 

[ ]0,t T∈ . Here, let Z
tF  and X

tF  for the P -augmentation of the natural filtrations 

generated by ( )Z t  and ( )X t , respectively. For each [ ]0,t T∈ , we define 

Z X
t t tF F F= ∨  as the σ - algebra. In this case, the Radon–Nikodym derivative is 

given by 

 

 
0

2exp ( ) 1( ) exp ( )
2exp ( ) Zt

M
M

F F

W tdQt W t t
dP E W t


  



         
  

,        (3.1) 

where MQ  is the risk-neutral pricing measure (Merton measure) resulting from this 

approach. Under these assumptions, we can obtain that ( ) ( )M rW t W t t


      
 is 

a Wiener process under MQ , which means that the investors receive a premium 
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r


     
 for the continuous diffusion risk at time t , and thus the Wiener process is 

affected by the measure change. In addition, under MQ , we also have the distribution 

of the Markov-modulated Poisson process as 

   ( ) ( ), 0( ) ( ), 0 ( )1 ( ( ) ( ), 0)M M
t n X t tP t n X t t E t P t n X t t   

          
 

( )0
( )0

exp
!

nt
X s t

X s

ds
ds

n




             


 , - a.s.P                        (3.2) 

which means that the investors receive a zero premium for the jump risk, and hence 

the transition probability matrix ( , ) ( , )MP n t P n t  and the arrival intensity matrix 

M   are unchanged by the measure change, that is, the risk-neutral properties of 

the jump component of the gold futures price are supposed to be the same as its 

statistical properties. In particular, the independently identically distributed jump 

amplitudes ( )
. . .

2,
i i d

M
k y yY N µ σ


 are also unchanged. Appendix A shows the detailed 

proof. Accordingly, the risk-neutral process for the gold futures price dynamics under 

MQ  is 

    
( )

1

( ) ( ) exp 1
( )

M t
M M M

k
k

dF t r dt dW t d Y
F t

 




          
 ,            (3.3) 
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3.2 Esscher transform for the Markov regime-switching 

jump-diffusion process 

In this section, we relax the model assumptions of Merton (1976), and then apply the 

Esscher transform (Gerber and Shiu, 1994, 1996) used by Elliott et al. (2005) and 

Elliott and Osakwe (2006) for the RSJM to determine a risk-neutral pricing measure. 

Under the given filtered probability space { } [ ]( )0,
, , , t t T
F P F

∈
Ω , the Radon–Nikodym 

derivative of the Esscher transform can be expressed 

 
 

0

0

( )

1

( )

1

exp
exp ( )

( )
exp ( )

exp

m
m

Zt

X

t
J

kC
k

tCF JF
k

Fk

Y
W tdQt

dP E W t
E Y





 


 











      
  

               




 

     
( )

2

1

1exp ( ) ( ) exp
2

J
t

C C J
k

k

W t t Y t     




               
 , (3.4) 

where 
m

Qθ  is the Esscher measure and m Rθ ∈  for { },m C J= , in which Cθ  and 

Jθ  are the Esscher parameters of the continuous diffusion part ( )C t  and the jump 

part ( )J t  for the gold futures logarithmic return ( )Z t , respectively. As a 

consequence, the mean percentage jump amplitude of the gold futures price becomes 

  21exp 1 exp ( ) 1 ( ) 1
2

J J J J J
k y y YE Y       

              
. Furthermore, the 

concrete form of the Esscher transform density process ( )
m

t  is an exponential 
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tF -martingale. 

According to the general theory of derivative pricing, the absence of arbitrage 

opportunities is equivalent to the existence of an equivalent martingale measure under 

which the discounted asset price processs is a martingale. For the no-arbitrage 

valuation of American gold futures options, there exists a risk-neutral pricing measure 

such that the Markov, regime-switching jump-diffusion process for the gold futures 

price is an tF - martingale under this measure. Let the Esscher transform be defined 

by Equation (3.4). Then, the martingale condition is satisfied if and only if 

2
C r  




 
                                               (3.5) 

and 

2

2

1
2y yJ

y

 




 
 .                                              (3.6) 

Appendix B shows the detailed proof. 

An equivalent martingale measure can be treated as the Esscher measure 
m

Qθ  

with respect to the measure P . We begin with identifying the dynamic process for 

gold futures prices under the risk-neutral pricing measure 
m

Qθ . Let Cθ  and Jθ  be 
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the Esscher parameters of the risk-neutral Esscher measure. Then, under 
m

Qθ  and 

conditional on Z
tF  

( ) ( )
m CW t W t tθ θ σ= − ,                                             (3.7) 

is a Wiener process. Furthermore, under 
m

Qθ , the transition probability matrix 

( , )
m

P n t  of the continuous-time finite-state Markov chain ( )
m

X tθ , the arrival 

intensity matrix 
mθΛ  of the Markov-modulated Poisson process ( )

m

tθΦ , and the 

jump amplitude 
m

kYθ  are respectively given by 

   ( , ) ( , ) ( ) exp
m JnJ

YP n t P n t t     ,                           (3.8) 

 21( ) exp
2

m J J J
Y y y

      
       

,                                        (3.9) 

and 

( )
. . .

2 2,
m

i i d
J

k y y yY Nθ µ θ σ σ+


,                                        (3.10) 

where ( ) ( )
m CW t W t tθ θ σ= −  is changed by the Esscher transform, which means that 

the investors receive a premium Cθ σ−  for the continuous diffusion risk at time t , 

and then the Wiener process is affected by the measure change. Through the change of 

measures, the risk-neutral transition probability matrix becomes ( , )
m

P n t  with 
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transition rate matrix   and arrival intensity matrix 
m . Under 

m

Qθ , the jump 

risk can be formulated by the Esscher transform intensity of the Markov-modulated 

Poisson process. The arrival intensity matrix ( )
m J

Y
     is altered by the 

Esscher transform, which means that the investors receive a premium ( )J
Y   for the 

jump risk at time t , and thus the arrival intensity is affected by the measure change. 

If ( ) 1J
Y   , the jump risk is not priced as in Merton (1976), and the arrival 

intensity and distribution are unaffected by the measure change. Under 
m

Qθ , if a 

jump event occurs at time k , the jump amplitude 
m

kYθ  is normally distributed with 

mean 2J
y yµ θ σ+  and variance 2

yσ . Appendix C presents the detailed proof. 

Using a pair of solutions of Esscher parameters given by Equations (3.5) and 

(3.6), we further get 

( ) ( )
m rW t W t t  


       

,                                  (3.11) 

2 2

2exp
82

m y y

y

  



         
,                                       (3.12) 

and 

. . .
2 21 ,

2
m

i i d

k y yY Nθ σ σ − 
 

,                                          (3.13) 
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where r 


      
 and 

2 2

2exp
82

y y

y

 



       
 are the market prices of the continuous 

diffusion risk and jump risk at time t , respectively. In addition, under 
m

Qθ , the jump 

amplitude 
m

kYθ  is normally distributed with mean 21
2 yσ−  and variance 2

yσ . 

Consequently, the gold futures price dynamics under 
m

Qθ  is 

  
( )

1

( ) ( ) exp 1
( )

m

m m
t

k
k

dF t rdt dW t d Y
F t



 




           
 ,                   (3.14) 

where 2 m JCr          , for all [ ]0,t T∈ . 

3.3 Valuing American gold futures options 

The valuation and optimal exercise of derivatives with discrete American-style 

exercise features is one of the most important practical problems in option pricing. 

These types of derivatives could be found within the commodity market. Assume that 

we are interested in pricing American put options on gold futures, where the 

risk-neutral gold futures price dynamics follow the stochastic differential Equations 

(3.3) and (3.14). The sample paths of such dynamic processes are generated by LSM 

simulations. For each path the optimal stopping point is determined using the 

estimator function with    
1

2
1 2 1 1 1

ˆˆˆ; , , , , ( )  ( )tF t t t t E Z a b F t c F t          , 

where Z  represents the discounted cash flow of an option. In line with the option 
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pricing theory, an optimal exercise policy will generate exactly one cash flow for each 

path. The American gold put options are then priced by discounting the resulting cash 

flows back to time zero, and averaging the discounted cash flows over all paths. 
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Chapter 4                         

Empirical Analyses and Numerical Illustrations 

To investigate that the gold futures price follows the RSJM, we perform a strict 

empirical analysis for the gold futures returns. Applying the estimated parameters 

from the RSJM, this dissertation further provides some numerical illustrations using 

actual option market data to assess the impacts of both Merton measure and Esscher 

transform on state-based jump-event premia. We also present a comparative analysis 

between alternative stochastic processes with respect to their pricing accuracy. 

4.1 Empirical results 

The dataset used in the descriptive analysis of Table 4.1 consists of the daily gold 

futures prices.2

                                                 

2 The daily data are from Bloomberg and cover the period from 01/02/2007 to 12/31/2010. 

 Analyzing returns from different periods makes us to examine the 

potential effect of different jump behaviors over time. The skewness and kurtosis 

coefficients suggest a leptokurtic distribution with positively skewed returns in the 

gold futures market. In 2008 and 2009, we can observe extreme movements and 

jumps in the daily returns, respectively. These can be regarded as the volatile state 

(state 2), whereas other periods can be viewed as the ordinary state (state 1). Taking 
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the gold futures returns that are over 5%±  in magnitude as an example, Table 4.1 

shows that the mean frequency of the jumps in the entire period is 2.25, where the 

mean frequencies of the jumps in state 1 and state 2 are 0 and 4.5, respectively. State 1, 

therefore, is deduced as being below the long-term average jump activity. State 2 is 

inferred as being above the long-term average jump activity. As shown in Table 4.1, 

the period 2007 is in state 1, but the regime transitions to state 2 in the periods 2008 

and 2009, and then transitions back to state 1 in the period 2010. A further implication 

of the figures in Table 4.1 is that during the test period, the economy switches 

between two states of jump rates, showing the characteristic that the state-dependent 

nature of the jump dynamics. 

Table 4.1 Descriptive statistics of the gold futures returns 

Classification 2007 2008 2009 2010 Total 

Trading days 251 253 252 252 1008 

Mean 0.0007 −0.0002 0.0008 0.0010 0.0006 

Std. Dev. 0.0105 0.0191 0.0138 0.0101 0.0138 

Skewness −0.5418 0.2982 0.2708 −0.6290 0.0925 

Kurtosis 4.6612 5.0181 5.6249 5.0150 6.6019 

Days exceeding 3%±  5 22 7 3 37 

Days exceeding 5%±  0 8 1 0 9 

Days exceeding 7%±  0 1 1 0 2 

Note: The descriptive statistics are reported for the gold futures returns from 2007 to 2010. This table 

shows the number of days each year in which the gold futures yield a logarithmic return series over 

3%± , 5%± , and 7%±  in magnitude. 
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The previous analysis of Table 4.1 sheds doubts on the validity of the GBM 

assumption. Motivated by these findings, we examine the ability of alternative 

stochastic processes for modeling the gold futures prices. In the empirical analyses, 

we employ the Black–Scholes model (BSM) as a benchmark for the actual data 

analyzed. For simplicity, we assume that the hidden Markov chain ( )X t  has two 

states: state 1 and state 2. This means that, an economy switches between the ordinary 

and volatile states. The transition probability matrix of the two-state Markov chain 

( )X t  is given by 11 12 11 11

21 22 22 22

1
1

P P P P
P P P P

−   
=   −   

. Due to the economic state is hidden 

at time zero, the stationary distribution can be evaluated by the transition probability. 

Therefore, the stationary distributions of state 1 and state 2 are 2
1

1 2

v
v vπ = +  and 

1
2

1 2

v
v vπ = + , respectively. Given the gold futures price dynamics defined in 

Equation (2.5), we express the logarithmic return in discrete time as follows: 

1

2

( )

~ ~ 1
( )

1

( ) 1
( )

( ) 2

N t

k
k

N t

k
k

Y if X t
R t Z

Y if X t
µ σ

∆

=

∆

=

 =∑
= + + 

 =∑


,                                     (4.1) 

where 
~

21
2

tµ σ κµ  = − −Λ ∆ 
 

 with ( )( )11 1 22 2 (1) 1)Yp pκ λ λ φΛ = + − , 
~

tσσ = ∆ , 

~ (0,1)Z N , 2~ ( , )k J JY N µ σ , and ( )iN t∆  is a Poisson process with the intensity rate 

iλ  in the interval time t∆  when the Markov chain ( )X t  remains in state i . The 
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states and the jump arrivals are unobserved. We apply the EM algorithm (Lange, 

1995a, b) to calculate the maximum likelihood estimations. In the first step, given the 

observed return data R  and the former one-period parameters ( 1)k−Θ , we compute 

the conditional expectation of the log complete-data likelihood function as 

( )( 1) ( 1), log Pr( , , | ) | ,k kE− − Γ Θ Θ = Θ Θ R X N R . Then, for the second step, we 

maximize the Γ -function to use the parameter set as ( )( ) ( 1)arg max ,k k−Θ = Γ Θ Θ . 

By the iteration and recursive computation of these two steps, the parameters 

converge the Γ -function to the local maximum in the incomplete-data likelihood 

function. Applying the code of the EM algorithm and the complete-data information 

matrix, we get the standard errors of parameter estimators by the SEM algorithm 

(Meng and Rubin, 1991). Khalaf et al. (2003) combine bounds and Monte Carlo 

simulation techniques to test the generalized autoregressive conditional 

heteroskedasticity (GARCH) class of models with nuisance parameters. To determine 

whether the JDM outperforms the BSM, and whether the data fit the RSJM better than 

the JDM, we apply the likelihood ratio test as follows: 

( ) 2
1 0 ,12 ln ( ) ln ( )

asy

dLR L L αχ −Τ = Θ − Θ → ,                              (4.2) 

where ( )mL Θ  represents the likelihood function under the hypothesis mH  for 

{ }0,1m = , and d  denotes the difference of the parameters between the 0H  and 
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1H  constraints. If 2
,1dLR αχ −Τ > , 0H  is rejected. The respective null hypotheses are 

that the BSM and JDM hold. 

The estimated parameters and corresponding standard errors (in parentheses) for 

each one of the alternative stochastic processes, and the likelihood ratios under study 

are reported in Table 4.2. The results provide several interesting findings. In the case 

of the JDM vs. RSJM, we can determine the value of d  by the difference in the 

number of parameters between these two models. At the confidence level of 

1 0.95α− = , the critical value for the aforementioned test is 2
4,0.95 9.49χ = . As shown 

in Table 4.2, we can observe that the RSJM outperforms the JDM by the likelihood 

ratio 2LRΤ  of 108.03 > 9.49 at the 5% statistical significance level, implying that the 

addition of the Markov-modulated Poisson process clearly dominates the pure Poisson 

process, that is, there exists the regime-switching jump feature due to the 

state-dependent nature of the RSJM. By a similar procedure, we find that the JDM 

clearly dominates the BSM by the likelihood ratio 1LRΤ  of 126.68> 2
3,0.95 7.82χ =  

at the 5% statistical significance level, as shown in Table 4.2. In addition, these two 

transition probabilities of the gold futures market for the RSJM are almost 1, 

emphasizing that the economy stays in each state for a period of time and then 

transitions to other. Chang et al. (2013) indicate when the sum of these two transition 



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

 

 29 

probabilities is nearly 2, the autocorrelation of volatility (volatility clustering) is most 

significant. Table 4.2 shows that the sum of these two values is nearly 2, and we 

therefore find the volatility clustering is substantial, as in Chang et al. (2013). The 

mean and standard deviation of the gold futures returns for the RSJM are 0.0020 and 

0.0069, respectively. The additional jump component prescribes a drift of −0.0011 and 

a volatility of 0.0105. The arrival intensity is found to be 0.6277 in state 1 and 3.7508 

in state 2, which clearly demonstrates different arrival rates in different states. These 

findings indicate that the gold futures price has a GBM structure with 

Markov-modulated Poisson processes, that is, the jumps are subject to 

regime-switching movements that cannot be explained by existing jump-diffusion 

processes, such as in Merton (1976), Amin (1993), and Kou (2002). They are 

consistent with the findings in the descriptive analysis of Table 4.1, namely the 

non-normality of returns and the existence of changing jump rates according to the 

economic states. 
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Table 4.2 Estimated results of continuous-time models 

Parameter BSM JDM RSJM 

11p    
 

  
 

0.9969  (0.0028) 

22p    
 

  
 

0.9879  (0.0117) 

µ  0.0006  (0.0004) 0.0021  (0.0005) 0.0020  (0.0004) 

yµ    
 

−0.0019  (0.0008) −0.0011  (0.0005) 

σ  0.0138  (0.0003) 0.0067  (0.0003) 0.0069  (0.0006) 

yσ    
 

0.0130  (0.0003) 0.0105  (0.0011) 

1λ    
 

0.8244  (0.2611) 0.6277  (0.1848) 

2λ    
 

  
 

3.7508  (1.1795) 

1LRΤ    
 

126.68 
 

2LRΤ  
   

108.03 

Note: This table presents the empirical results of dynamic models, reporting the estimated parameters 

and corresponding standard errors. The estimation settings for the BSM and JDM/RSJM are 

determined via the maximum likelihood (ML) approach and EM algorithm, respectively. The standard 

errors of parameter estimators for the BSM and JDM/RSJM obtained by the ML approach and SEM 

algorithm, respectively, are reported in parentheses. 1LRΤ  represents the likelihood ratio test for 

maximum likelihood functions with the null hypothesis that there is no jump event, that is, the dynamic 

model is BSM. 2LRΤ  shows the likelihood ratio test for maximum likelihood functions with the null 

hypothesis that there is no switching regime, that is, the dynamic model is JDM. Performance is 

evaluated in terms of both the statistical accuracy and likelihood ratio test. 

Table 4.3 presents the mean, variance, skewness, and kurtosis for the original 

data and alternative stochastic processes. We further compare these model-determined 

values with empirical results. To investigate the leptokurtic and asymmetric features 

in gold futures returns, we use the formulas for the skewness and kurtosis of the JDM 

(Becker, 1981; Ball and Torous, 1983) and of the RSJM (Chang et al., 2013). As 

shown in Table 4.3, the mean and variance for the original data and alternative 

stochastic processes are the same. Comparing with the original data, the RSJM is 
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better than BSM and JDM in terms of kurtosis. 

Table 4.3 Distributional statistics for data and continuous-time models 

Classification Data BSM JDM RSJM 

Mean 0.0006 0.0006 0.0006 0.0006 

Variance 0.0002 0.0002 0.0002 0.0002 

Skewness 0.0925 0 −0.3076 −0.3966 

Kurtosis 6.6019 3 5.1067 6.0758 

Note: This table reports the distributional statistics for the original data and continuous-time models. 

Figure 4.1 (a) plots the dynamic process of daily gold futures price data. Figure 

4.1 (b) apparently exhibits different arrival rates with changing volatility over the test 

period. The time-varying volatility is captured by the RSJM in the form of 

regime-switching behavior, that is, the fluctuating periods of high and low arrival 

rates. Using the Baum-Welch algorithm adopted by Chang et al. (2013), as shown in 

Figure 4.1 (c), we find that the first 150 and the last 450 days of the period seem to 

predominantly characterized by a low arrival rate (the probability of state 1 is close to 

1), while the other days are characterized by a high jump intensity (as in state 2). Our 

test period ends with a period of high arrival rates, corresponding to the U.S. 

subprime financial crisis of 2008. Figure 4.1 (d) shows the probability of jumps in a 

period, when there exists jumps, the probability is nearly 1. Compared with the Figure 

4.1 (b), the aforementioned turmoil is an example of such jump-sensitive periods. 
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Figure 4.1 Graph of (a) gold futures prices, (b) logarithmic returns, (c) State probability, and (d) Jump 

probability 

Note that the dotted lines in (b) denote the gold futures returns over 5%±  in magnitude are jumps. (c) 

shows the probability of being in state 1, whereas the economy is in state 2 when the probability is 

zero. 

Regarding the so-called volatility clustering, we make use of the autocorrelation 

function of the squared asset returns calculated by Chang et al. (2013) to investigate 

this phenomenon. Figure 4.2 shows a substantially positive autocorrelation in the 

squared logarithmic returns of gold futures in which the trend steadily declines as the 

lag length increases. The RSJM therefore captures not only the existence of volatility 

clustering but also the magnitude and decay of this phenomenon. Under the RSJM 

framework, the volatility clustering occurs from the jump clustering caused by the 

jump arrival intensity changes over time according to the states of an economy. These 
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empirical results suggest that the RSJM provides the adequate description for the gold 

futures returns. It is an evidence that the model addresses the previously mentioned 

empirical characteristics, including the presence of jumps, leptokurtosis, asymmetry, 

and volatility clustering phenomena. The RSJM overcomes the shortcomings of GBM 

and jump-diffusion processes (Merton, 1976; Amin, 1993; Kou, 2002) for modeling 

the underlying asset price. This dynamic model will be general enough to cater for 

price jumps more appropriate for gold futures. 
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Figure 4.2 Model autocorrelation of the squared logarithmic returns 
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4.2 Pricing performance 

In this section, we evaluate the pricing performance of in-sample and out-of-sample 

periods using actual option market data3

The pricing errors presented in Table 4.4 correspond to RMSEs across both 

in-sample and out-of-sample data analyzed. On the in-sample analysis of the option 

pricing models in terms of RMSEs. The results show that the American gold put 

options are more accurately priced using the RSJM under the Esscher measure. For 

 from the Commodity Exchange (COMEX). 

As a benchmark, we apply the BSM to price American put options on gold futures. 

The one-year U.S. treasury bill rate is used as a proxy for the risk-free rate. The 

relative mean square errors (RMSEs) are adopted for model evaluation. Due to actual 

data limitations, an analysis across moneyness levels is not possible. The parameters 

of each model are calibrated over periods of four years and then the estimated 

parameters are used to evaluate the pricing performance of in-sample and 

out-of-sample periods for each option. 

780K =  and 800K = , the pricing errors of the RSJM under the Esscher measure 

are just slightly higher than those under the Merton measure in terms of RMSEs. 

                                                 

3 The option data are from Bloomberg. These data correspond to the gold futures prices and cover 
the period between 10/01/2010 and 03/31/2011 with the expiration date 05/25/2011. 
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Taking the strike price 860K =  as an example, the largest improvement offered by 

the RSJM under the Esscher measure over the Merton measure is 0.0411 in the 

reduction of RMSEs. Turning now to the out-of-sample analysis, we find a similar 

picture. The results show that the RSJM under the Esscher measure is again more 

accurate than under the Merton measure in pricing American gold put options. For 

780K = , the pricing error of the RSJM under the Esscher measure is just slightly 

higher than that under the Merton measure in terms of RMSEs. When 840K = , the 

improvement is largest for the RSJM between the Esscher and Merton measures with 

a reduction of 0.0672 in terms of RMSEs. 

Through the analysis of in-sample and out-of-sample pricing errors with different 

strike prices K , these numerical illustrations indicate that pricing errors under the 

RSJM are all smaller than those competing models in terms of RMSEs. Specifically, 

the reduction of the RMSEs between the JDM and RSJM is more substantial than that 

of the RMSEs between the BSM and JDM. One can infer that for this reason, the 

Markov component contributes more to the superior pricing performance rather than 

the pure jump process. The numerical results show that the RSJM is more accurate 

than the BSM and JDM in pricing American gold put options. In other words, whether 

the Merton measure or Esscher transform is employed to derive the risk-neutral gold 
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futures price dynamics, the RSJM strongly outperforms the BSM and JDM. Overall, 

the evidence presented seems to suggest that it is worth accounting for 

state-dependent jump risks when pricing American put options on gold futures. Once 

more data become available, it is necessary to engage a more extensive comparative 

analysis between alternative stochastic processes, not only with respect to their 

pricing accuracy but also in terms of their hedging performance. 

Table 4.4 In-sample and out-of-sample pricing errors of American gold put option pricing models 

K  

 BSM  JDM  RSJM 

 
Merton measure 

 
Esscher measure 

In-sample pricing errors (%) (Observations=64) 

780 0.9700 0.9659 0.3549 0.3583 

800 0.9587 0.9542 0.2910 0.2935 

820 0.9429 0.9376 0.3176 0.3008 

840 0.9231 0.9174 0.3512 0.3202 

860 0.8985 0.8930 0.3836 0.3425 

 
Out-of-sample pricing errors (%) (Observations=62) 

780 0.9971 0.9955 0.7050 0.7089 

800 0.9945 0.9925 0.7622 0.7423 

820 0.9909 0.9882 0.8288 0.8100 

840 0.9859 0.9822 0.9100 0.8428 

860 0.9796 0.9737 0.8454 0.7900 

Note: This table presents the RMSEs of various option pricing models. We calibrate each model in the 

period from 01/03/2007 to 12/31/2010 and then use the estimated parameters to evaluate the in-sample 

performance in the period from 10/01/2010 to 12/31/2010 as well as the out-of-sample performance in 

the period from 01/03/2011 to 03/31/2011. The RMSEs are estimated by minimizing the sum of the 

squared pricing errors between the LSM-simulated prices and the market prices (divided by the market 

prices) for each option. The RMSE (pricing error) expressed in percentage. Pricing performance is 

evaluated for the aggregate sample on the basis of the RMSEs. 
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Chapter 5                        

Conclusions and Future Extensions 

According to the empirical analysis of the gold futures returns, we verify the existence 

of unanticipated jump events with different jump rates of gold futures prices in 

different time periods. The empirical results show that the gold futures price is better 

approximated by a continuous-time, Markov regime-switching jump-diffusion process. 

Compared with the standard jump-diffusion processes, the main advantage is that we 

incorporate state-dependent jump risks into the dynamic model. This stochastic 

process also appropriately characterizes the leptokurtosis, asymmetry, and volatility 

clustering across the empirical data analyzed. In the light of the empirically favored 

RSJM for the gold futures price under the different jump risk considerations, we adopt 

the Merton measure and Esscher transform to derive the risk-neutral gold futures price 

dynamics. After determining such dynamic processes, the values of American gold 

futures options are approximated using the LSM method. In this dissertation, we 

empirically investigate the in-sample and out-of-sample pricing performance of the 

LSM algorithm for American gold futures options with alternative stochastic 

processes, including GBM, JDM, and RSJM. The numerical results indicate that 

whether the Merton measure or Esscher transform is employed to derive the 
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risk-neutral gold futures price dynamics, the RSJM strongly outperforms the BSM 

and JDM. As a consequence, we find that the Markov-modulated Poisson process is 

more accurate than the pure Poisson process when valuing American gold futures put 

options, and jump risks implied by the RSJM have a more significant impact on the 

option prices. To some extent, the comparison has indicated the importance of 

incorporating state-dependent jump risks into the gold futures price model. 

This dissertation has several possible extensions and potential improvements. 

First, due to the discrete nature of jump risks, the riskless hedging with jump risks 

under an incomplete gold market remains an important challenge. Second, we might 

employ an alternative distribution instead of a log-normal distribution used in the 

jump amplitude. Third, it is interesting to examine how the changing transition rate 

impacts the transition probability under the measure change. Fourth, more simple, yet 

powerful numerical algorithms are required to evaluate the American-style options. 

As a potential future work, we might consider incorporating other Markov 

regime-switching market parameters, such as interest rates, the appreciation rate and 

the volatility of the underlying asset price, the jump amplitude of a compound Poisson 

process, into the dynamic model studied in this dissertation. Comparing the effect of 

risk premia on the option prices may be a new interesting topic. 
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Appendix A: Distributional properties of RSJM 

under MQ  

Proof. Based on Equation (3.1), apply the Girsanov theorem and by the Itô's rule, we 

immediately get that ( ) ( )M rW t W t t


      
 is a Wiener process under MQ . We 

then denote the moment-generating function of the random variable kY  by 

 (1) exp 1Y kE Y      . This does not depend on the index k  because 

{ }: 1, 2,...kY k =  all have the same distribution. Then, we have 

   
( )

1 1 1

exp ( ) 0 exp ( ) ( )
t n

k k
k n k

E Y P t E Y t n P t n
 

  

                                  
    

        
0 0 1 1

exp , (1) ,
n I I

n
k i Y ij

n n i j

E Y P n t P n t 
 

   

      

 exp t  ,                                                  (A.1) 

where iπ  denotes the stationary distribution in state i . This limiting distribution can 

be computed by 
1,

I
jj i kj jk k j

   
 

  along with the constraint 
1

1
I

jj



 . 

Furthermore, we note that 
( )

1

t
kk

Y t



  is a martingale at time t . Given 

( )t nΦ = , the Radon–Nikodym derivative of the transition probability can be written 

as 
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.

( ).
1

M
prob

t nprob

dQ
dP  

 ,                                               (A.2) 

then we get ( , ) ( , )MdP n t dP n t , where ( , )MP n t  denotes the transition probability 

matrix under MQ . Moreover, we use Equation (2.2) and its unique solution given by 

Equation (2.3). Letting ( , ) ( , )MP n t P n t , we can get 

* *

0 0

( , ) ( , ) ( , ) ( , )M M n n

n n

P t P n t P n t P t   
 

 

     

          exp (1 ) t    ,                                  (A.3) 

Therefore, the transition rate matrix   of the transition probability matrix ( , )MP n t  

and the arrival intensity matrix M   are unchanged by the measure change. 

Finally, we investigate the jump amplitude, where  1 2, , , nY Y Y  are independently 

identically distributed random variables. Thus, the Radon–Nikodym derivative of 

each specific jump amplitude can be set as 

1
X

t

M
Y

Y F

dQ
dP

 ,                                                 (A.4) 

then we obtain 
 2

22

1 exp
22

k yM
Y Y

yy

Y
dQ dP





           
. Under MQ , if a jump event 

occurs at time k , the jump amplitude M
kY  is normally distributed with mean yµ  
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and variance 2
yσ . Furthermore, under MQ , the density function of each specific jump 

amplitude M
kY  is ( ) ( )M

Y Yf y f y , and therefore the density function is unchanged 

by the change of measures. 
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Appendix B: Solving the Esscher parameters 

Proof. Let 
m

Eθ  denote the mathematical expectation operator with respect to the 

Esscher measure 
m

Qθ  equivalent to P . It is possible to select the risk-neutral 

Esscher measure as the measure 
m

Qθ  such that the discounted gold futures price 

process is a 
m

Qθ -martingale. This is obtained by determining the Esscher parameters 

Cθ  and Jθ  as solutions of   0exp ( ) (0)
m

E rt F t F F     . Applying Equation (3.4), 

we have 

   0 0(0) exp ( ) exp ( )
m

m dQF rt E F t F rt E F t F
dP




                
 

( )
2

1

1(0) exp ( )
2

mt

k
k

dQF E r t W t Y
dP



   




                    
  

    
2 221 1 1(0)exp 1

2 2 2
C CF r t t t      

               
 

   1exp
J J

t  
             

,                                   (B.1) 

From the mutual independence of random shocks ( )W t , ( )tΦ , and kY , and then the 

martingale condition holds if and only if the Esscher parameters Cθ  and Jθ  satisfy 

2 0Cr                                                (B.2) 
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and 

2 21 0
2

J
y y y      ,                                          (B.3) 

for all [ ]0,t T∈ . Therefore, we can define a pair of solutions of Esscher parameters 

for the martingale condition by Equations (3.5) and (3.6). 
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Appendix C: Distributional properties of RSJM 

under m

Qθ  

Proof. By Equation (3.4), apply the Girsanov theorem and from the mutual 

independence of random shocks ( )W t , ( )tΦ , and kY , we can obtain that 

( ) ( )
m CW t W t tθ θ σ= −  is a Wiener process under 

m

Qθ . Next, we denote the 

moment-generating function of the random variable kY  by 

 ( ) exp 1
JJ J

Y kE Y         
. This does not depend on the index k  because 

{ }: 1, 2,...kY k =  all have the same distribution. Then, we have 

   
( )

1 1 1

exp ( ) 0 exp ( ) ( )
t n

J J
k k

k n k

E Y P t E Y t n P t n 
 

  

                                  
    

    
0 0 1 1

exp ( , ) ( ) ( , )
n I I nJ J

k i Y ij
n n i j

E Y P n t P n t   
 

   

       

 exp
J

t  ,                                                (C.1) 

where iπ  denotes the stationary distribution in state i . This limiting distribution can 

be computed by 
1,

I
jj i kj jk k j

   
 

  along with the constraint 
1

1
I

jj



 . 

Specifically, we note that 
( )

1

JtJ
kk

Y t 



  is a martingale at time t . Given 

( )t nΦ = , the Radon–Nikodym derivative of the transition probability can be set as 
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   .

. ( )
( ) exp

m

Jnprob J
Y

prob t n

dQ
t

dP


  

 

  ,                            (C.2) 

then we get    ( , ) ( , ) ( ) exp
m JnJ

YdP n t dP n t t     , where ( , )
m

P n tθ  denotes 

the transition probability matrix under 
m

Qθ . We use Equation (2.2) and its unique 

solution given by Equation (2.3). Letting    ( , ) ( , ) ( ) exp
m JnJ

YP n t P n t t     , 

we can get 

       *

0 0

( , ) ( , ) ( ) exp ( , ) ( ) exp
m J Jn nJ n J

Y Y
n n

P t P n t t P n t t         
 

 

    

              exp (1 ) ( )J
Y t      ,                            (C.3) 

where the transition rate matrix   of the transition probability matrix ( , )
m

P n t  is 

unaffected by the Esscher transform. Under 
m

Qθ , the jump risk can be formulated by 

the Esscher transform intensity  21( ) exp
2

m J J J
Y y y

      
       

. Finally, 

we investigate the jump amplitude, where  1 2, , , nY Y Y  are independently 

identically distributed random variables. Hence, the Radon–Nikodym derivative of 

each specific jump amplitude can be written as 

 
 

0

exp

exp

m

X
t

X

J
kY

JY F
k F

YdQ
dP E Y

 




 
 
  

,                                    (C.4) 
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then we obtain 
  22

22

1 exp
22

m

J
k y y

Y
yy

Y
dQ

  



            

. Furthermore, under the 

physical probability measure P , the density function of each specific jump amplitude 

kY  is ( )Yf y . Through the change of measures, under 
m

Qθ , the density function of 

each specific jump amplitude 
m

kYθ  is ( ) ( )
m

m

X
t

Y
Y Y

Y F

dQf y f y
dP


   . 
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