Projector Calibration of Multi-Resolution Display

Po-Hsun Chiu, Shih-Yao Lin, Li-Wei Chan, Neng-Hao Yu, Yi-Ping Hung
Graduate Institute of Networking and Multimedia, National Taiwan University
E-mail: {d97944010, hung}@csie.ntu.edu.tw

ABSTRACT

Advances in display and input technologies have led to growing desire for creating a more immersive visual experience in interactive display systems. Research on constructing a large-scale, high-resolution display environment based on multi-projector mosaic has also become increasingly important to meet the cost-effective consideration. In our previous work, we had developed a system called i-m-Top, which integrated one steerable fovea projector for high-resolution projection and another fixed wide-angle projector for low-resolution. The touch-sensing is on the basis of diffused illumination and analyzed by computer vision approach. In this paper, we propose a fast, low-cost method for automatic projector calibration with the assistance of one color camera, to eliminate both the keystone effect and misalignment of the projections. Structured light patterns are projected to construct the geometric relationship between projectors and the projection surface, and then pre-warp the images so that they appear undistorted as a result. As opposed to manual calibration which is a tedious task, our approach not only saves time, but also reduces human-effort effectively.

Keywords Projector Calibration; Keystone Correction; Structured Light; Rear Projection; Multi-Projector; Multi-Resolution

1. INTRODUCTION

Interactive display systems have been developed to bring users with more intuitive and convenient manipulation. In order to improve visual feedback, the digital content is still on the growing desire to provide higher resolutions. These catalysts reinforce the advances in developing larger and clearer tabletop display. Many studies have already engaged in this area to develop a single large-scale and high-resolution display by utilizing arrays of tiled projectors or LCD monitors. Even each high-quality display element is available, increasing display element is extremely expensive for commercial use.

To solve this problem, we had developed the i-m-Top [1], a multi-resolution display system in previous work. The i-m-Top is a 56-inch interactive tabletop system based on rear-projection, featuring the multi-resolution characteristics of human vision by coupling a fovea and a peripheral projection. In human eyes, fovea centralis denotes the pit in the retina which allows for maximum acuity of vision, is made use of perceiving objects at high resolution. On the other side, surrounding the fovea region, peripheral area delivers highly compressed information of low resolution (Fig. 1). Taking advantages of such characteristics, the i-m-Top provides a high-resolution display around the user’s gaze point with one steerable projector, whereas provides low-resolution projection in peripheral viewing with one fixed wide-angle projector. By means of this hardware configuration, we could not only carry out a single low-cost, large-scale display, but also announce that enhancing quality of content at any focused region is possible.

In the process of designing a multi-projector display, the issues of geometric calibration must be taken into consideration. Since projectors are not always set perpendicularly to the screen, it would cause distortion effects of the images. Geometric calibration calculates the transformation between the display surface and the projectors. By applying such transformations to the rendering pipeline, images can then be pre-warped so that they appear fitting to the physical features of the screen, and also arranged with each other to eliminate the geometric misalignment across boundaries of overlapped projectors.

The i-m-Top stands for the displaying area, is entirely covered by the peripheral projection of the fixed wide-angle projector. On the other hand, emphasized with the feature of multi-resolution, to provide more detailed information wherever users take interest in, the steerable fovea projector must be capable of driving to project the local high-quality graphics throughout the surface. This can be achieved once the system is calibrated. In our previous work, a simple geometric calibration tool is used for the programmer to

Fig. 1. Relative acuity of the human eye in degrees from the fovea (Hans-Werner Hunziker, 2006).
reconfigure the system manually. The calibration process is, however, usually a tedious task. Manual pose calibration using steerable fovea projector is impractical, pose sampling is considered as an acceptable alternative. Suffering from the fact that the system performance is proportional to the number of the sampling poses in calibrating the steerable fovea projector, very much human effort and time are consumed during this routine.

To solve this problem, this study presents an automatic calibration technique to efficiently calibrate both multi-touch and multi-resolution process. Benefiting from it, once the display surface is changed by some external factors (e.g. the movement of the projectors or surface), what we only need to re-run the proposed approach. The experimental results illustrate that our approach successfully reduces human-effort and lower the running time.

The remaining of this paper is organized as follows. Section 2 briefly discusses some related works. The system overview is described in Section III. Section IV introduces the proposed calibration algorithms. The experimental results are shown in Section V and conclusions are finally drawn in Section VI.

2. RELATED WORKS

Multi-resolution is an intuitive and effective technique for large-scale and interactive display systems. To achieve this purpose, some studies provide a higher-resolution region in the central of the lower-resolution display. “Focus Plus Context Screens” [2] presented this approach by integrating a high-resolution LCD monitor into a larger low-resolution projected screen. Escritoire [3] is a similar setting was applied to the front projected tabletop system. However, the fovea region was fixed, resulting in constraint on the user’s interaction and freedom of fovea vision. Approaches addressed on this problem were presented in “Fovea-Tablett” [5], slim tablets PCs with coded maker were put deliberately on top of tabletop surface. The positions of the tablets were tracked and the screen contents were displayed on them at higher resolution. To improve the convenience in manipulation, a fovea projector was assembled with a pan-tilt unit and a mirror to provide steerable projection [1, 4].

In above works, being set orthogonal to the display surface in “Focus Plus Context Screens” [2], the projector was aligned with the high-resolution LCD monitor and the display surface manually, and no projector calibration was performed beforehand. With simple calibration tool in the Escritoire [3] and the i-m-Top [1], the movement of corresponding points for geometric transformations was under control of both keyboard and mouse.

In order to achieve the purpose of automate projector calibration process, various methods have been proposed. Lee et al. [7] embedded optical sensors on the target surface at the interesting point, and utilized these sensors to measure the structured light patterns from the projector directly. For camera-based approach, Sukthankar et al. [6] calibrated a casually placed projector using planar homographies [12], and Chen et al. [8] extend this idea with a tree of homographies in calibration of a multi-projector display. However, such works were under the constraint that geometry of the entire display surface must be planar uniformly. For dealing with arbitrary surfaces, corrected imagery would be displayed once the 3D configuration is estimated [9] shows that how to re-calibrate a multi-projector display system in real time.

3. SYSTEM OVERVIEW

The i-m-Top is a rear-projection tabletop system which contains multi-resolution display and multi-touch technique. With the proper calibration procedure, the system is configured with correct software setting. Thus, the developed applications on the i-m-Top works the way which users desire. In this section, firstly we introduce the

![Fig. 2. Hardware configuration of the i-m-Top: (a) wide-angle peripheral projector, (b) fovea projector with (c) reflecting mirror and PTU, (d) IR LEDs, (e) two IR cameras, and (f) color camera.](image)
hardware configuration, followed with the system calibration algorithm.

3.1. System Environment

The diagram of the i-m-Top is illustrated in Fig. 2. The display surface employs a piece of diffuser, which is on the top of a glass sheet. A fovea projector with a pan-tilt unit (PTU), a peripheral projector, and two IR cameras with several IR LED lights are installed underneath. The output images of the i-m-Top are displayed on the display surface through two DLP projectors, one for the peripheral region (Fig. 2 (a)) and the other for the fovea (Fig. 2 (b)). The peripheral projector, which is short throw wide angled (at 0.6m could fill 1.0m screen), on the other hand, projects to the outside region of the fovea. The yielding resolution of this peripheral projector is about 27 x 23 ppi with output image size of 1280 x 720 pixels and the table size of 47 x 32 inches. The fovea projector, which projects to a region of 11.6 inches wide by 7.5 inches high with output image size of 1280 x720 pixels, yields a resolution of 110 x 96 ppi (pixel per inch) on the display surface. In order to simulate how people obtain clear image of some regions by moving their gaze points, the i-m-Top implements a steerable fovea projection to bring in the functionality of high-resolution everywhere on demand. The projected image from the fovea projector is reflected by a mirror attached to a PTU, and forms up a high-resolution image on the diffuser. The PTU is computer-controllable for position, speed and acceleration via RS-232; In a proper calibration procedure, we can get the appropriate magnitudes of the pan and tilt angle of the reflecting mirror, as well as the corresponding homography, to project to any position on the display surface with high-resolution correctly.

The proposed automatic calibration algorithms calculate the transformation between the projector (peripheral projector and fovea projector) and display surface. Moreover, we also compute the mapping between the IR cameras and the display surface. The output of the various stages is summarized to the final result. The diagram of our calibration algorithm is shown in Fig. 3. To yield the camera image with a perfect perspective projection (pin-hole camera), the camera is pre-calibrated to deal with the radial lens distortion in advance. Camera images which capture the structured light patterns projected from peripheral projectors are then used to construct the projector-surface homography (Section 4.1). Similar methods are adopted in calibrating the fovea projector (Section 4.2). Now that it is impractical to do projector calibration for all valid PTU poses, we develop a calibration technique that calibrates the whole pan-tilt system by looking up the mapping table. In the last stage for calibrating IR cameras (Section 4.4), finger detection technique is involved. By taking it in cooperation with peripheral projector-surface mapping, IR camera-surface homography is then fulfilled in a both semi-automatic and user-friendly way.

The proposed automatic calibration algorithms are introduced in this section. Firstly, for geometric calibration, we proposed novel projector calibration approaches, which calibrate both peripheral and fovea projector. However, the fovea projector calibration is limited to sample finite poses of PTU. By using the interpolation, we can calculate the procedures are completed, the color camera will not be needed anymore and can be retired.

3.2. Stages of Calibration Algorithm

The output of the various stages is summarized to the final result. The diagram of our calibration algorithm is shown in Fig. 3. To yield the camera image with a perfect perspective projection (pin-hole camera), the camera is pre-calibrated to deal with the radial lens distortion in advance. Camera images which capture the structured light patterns projected from peripheral projectors are then used to construct the projector-surface homography (Section 4.1). Similar methods are adopted in calibrating the fovea projector (Section 4.2). Now that it is impractical to do projector calibration for all valid PTU poses, we develop a calibration technique that calibrates the whole pan-tilt system by looking up the mapping table. In the last stage for calibrating IR cameras (Section 4.4), finger detection technique is involved. By taking it in cooperation with peripheral projector-surface mapping, IR camera-surface homography is then fulfilled in a both semi-automatic and user-friendly way.

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this template measures proportionately more than is customary. This measurement and others are deliberate, using specifications that anticipate your paper as one part of the entire proceedings, and not as an independent document. Please do not revise any of the current designations.

3.3. System Calibration

The proposed automatic calibration algorithms are introduced in this section. Firstly, for geometric calibration, we proposed novel projector calibration approaches, which calibrate both peripheral and fovea projector. However, the fovea projector calibration is limited to sample finite poses of PTU. By using the interpolation, we can calculate the
mapping function of each non-calibrated position respectively. Then, IR camera calibration will be used to setup a correct environment for multi-touch detection as introduced below.

4. HOMOGRAPHY ESTIMATION

In standard situation, it is assumed that projectors are designed to project light in a direction orthogonal to the display surface. In our system, the peripheral projector is mounted in an oblique way to supply enough space utilization. For the fovea projector, the pan-tilt mirror can reflect the projection light to anywhere over the display surface, but in most of time the display surface is oblique to the direction of projection. Due to this, the image is displayed as distorted before any pre-processing.

To integrate a high-resolution sub-region and a low-resolution display with the display surface, geometric calibration against the aforementioned distortion effect is indispensable. In order to correct the oblique projection distortion, images to be projected should undergo the pre-warping function. Our system performs a coordinate transformation from the peripheral projector image plane (low-resolution)/fovea projector image plane (high-resolution) to the display surface plane. Mapping a 2D point in homogeneous coordinates on a plane to another plane can be achieved using a 3×3 homogeneous matrix. Unlike the peripheral projector which is fixed, the mirror which reflects the fovea projector’s projection in a number of different positions as the PTU moves. It means that a different homography is required for each different PTU pose, and we will discuss how to get all homographies for all different PTU poses later. The calibration of the peripheral/fovea projector is based on the method by Sukthankar et al.[6]. They presented a method for calculating 2D homography matrices using a set of point correspondences in two planes.

They recognized that a point \((x, y)\) in one plane is related to a point \((X, Y)\) in another plane by a single projective transform:

\[
(x, y) = \frac{h_0 X + h_1 Y + h_2}{h_3 X + h_4 Y + h_5} \frac{h_6 X + h_7 Y + h_8}{h_9 X + h_{10} Y + h_{11}}
\]

with eight degrees of freedom. Let \(\tilde{h} = (h_0...h_9)^T\) constrained by \(|\tilde{h}| = 1\). The same transform is more concisely expressed in homogeneous coordinates as:

\[
\begin{pmatrix} xw \\ yw \\ w \end{pmatrix} = \begin{pmatrix} h_0 & h_1 & h_2 \\ h_3 & h_4 & h_5 \\ h_6 & h_7 & h_8 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}
\]

Let \(H\) be the 3×3 homography matrix with the same elements as \(\tilde{h}\). \(H\) can be determined from as few as four pixel correspondences. Sukthankar et al.[6] defined the following 2n×9 matrix:

\[
A = \begin{bmatrix}
X_1 & Y_1 & 1 & 0 & 0 & 0 & -X_0 & -Y_0 & -x_0 \\
0 & 0 & 0 & X_1 & Y_1 & 1 & -X_0 & -Y_0 & -y_0 \\
X_2 & Y_2 & 2 & 0 & 0 & 0 & -X_0 & -Y_0 & -x_0 \\
0 & 0 & 0 & X_2 & Y_2 & 2 & -X_0 & -Y_0 & -y_0 \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
& & & & & & & & \\
X_n & Y_n & n & 0 & 0 & 0 & -X_0 & -Y_0 & -x_0 \\
0 & 0 & 0 & X_n & Y_n & n & -X_0 & -Y_0 & -y_0
\end{bmatrix}
\]

It follows from Equ.3 that given \(n\) point correspondences \((X_i, Y_i)\) and \((x_i, y_i)\), the homography matrix \(H\) can be calculated by minimizing the product \(|AH|\). The optimal \(h\) is the eigenvector corresponding to the smallest eigenvalue of \(A'HA\). This vector can easily be found using the singular value decomposition of the matrix \(A'HA\). These point correspondences are determined by using the structured light patterns. Detailed steps are described in the next Section.

4.1. Calibration of Peripheral Projector

We denote the coordinate system of color camera image plane \(C\), the coordinate system of peripheral projector \(PP\) and the coordinate system of display surface \(S\). The objective is to calculate the transformation matrix \(H^c_{sp}\) between the peripheral projector coordinate system and the display surface coordinate system. Initially, we obtain homography \(H^c_{c}\) and \(H^c_{pe}\) individually, and then apply matrix multiplication to generate \(H^c_{sp}\). The diagram of peripheral projector calibration is illustrated in Fig. 4.

Firstly, \(H^c_{c}\) is established using the corresponding feature points between camera image and display surface. It is claimed that the homography matrix takes at least four corresponding point pairs. Rather than placing physical markers which is inconvenient, this can be achieved by detecting the four display surface corners in camera image. Secondly, to calculate \(H^c_{pe}\), the homography matrix between camera and peripheral projector, some kind of feature pattern is used for associating feature point correspondences. We use a “circle pattern” (Fig. 5(a)), as the feature pattern projected by peripheral projector. The feature points can then be detected by the center of each circle. However, even though the positions of feature points are found out by using camera, we still cannot obtain the corresponding coordinate in projector space relatively. To identify each feature point, we adopt gray code patterns [14].
Fig. 5(b) shows the gray code patterns of our calibration task. By projecting these patterns, each circle in captured images can be treated as a marker with a unique address.

Due to the limitation of camera resolution, it is unable to distinguish projected imagery pixel by pixel. Discarding the pattern which has the maximum number of black/white stripes as the projector resolution, we just use enough distinguishable number of stripes to preserve time and avoid ambiguity. The pattern base is utilized as 4, indicating the number of patterns with vertical/horizontal direction. Hence there are $2^4 \times 2^4 = 256$ regions divided in projector space, and pixels belonging to one such region share the unique codeword. In feature pattern design, e.g., the circle pattern, feature point is equivalent to the center of each dividing region, matching the circle center exactly. After obtaining two homography matrices H_S^C and H_P^C, these two matrices are used for calculating the homography matrix $H_{SP}^C = H_S^C (H_P^C)^{-1}$. Besides the circle pattern, we employ other two categories of feature pattern. One is “concentric circle pattern”, which consists of two or more circle patterns, can lead to better accuracy than merely single circle pattern. The other is “middle line pattern”. Unlike the circle or concentric circle pattern whose accuracy would drop while the circle size is reduced due to more feature points, middle line pattern overcomes this issue since its feature points are located in the intersection of pattern stripe boundaries.

4.2. Calibration of Fovea Projector

To calculate the transformation matrix H_{SP}^C between the fovea projector FP and the display surface S, we follow the previous strategy in calibrating peripheral projector. Similar to peripheral projector calibration, we generate H_{SP}^C by merging H_P^C and H_S^C. Given that H_S^C has been estimated in previous section, thus, we only need to estimate H_P^C, which is calculated in the similar way used in H_C^PP. The above process is applied for some desired PTU poses (pan, tilt), each corresponds to a different homography H_{SP}^C. Due to the resolution of the display surface is too high to calculate all possible homographies, which leads to a high computational cost. It is impractical to calculate the homography corresponding to each possible position of display surface. Instead we develop a calibration technique that calibrates the whole pan-tilt system which allows the fovea projector to project on any desired positions without estimating homographies sequentially for all (pan, tilt). The method is described in the next section.

4.3. Mapping Function Interpolation
We sampled some PTU angles with fixed interval. The movement of projection trajectories is a smooth curve, as shown in Fig. 6(a), the yellow points depict the projected position according to sampled pan-tilt poses, and the boundary of the display surface is represented by the white quadrilateral. As focusing on the movements with fixed pan (tilt) and varied tilt (pan), they can be approximated by the quadratic curves. We built a lookup table according to the calibrated PTU poses and interpolate the corresponding points for homography estimation and PTU poses for any desired display surface positions.

If we want to obtain the PTU poses of one non-calibrated position, as the red point c_N shown in Fig. 6(b), first we define four quadratic lines $\{L_0^p, L_0^t, L_1^p, L_1^t\}$ surrounding it. L_0^p and L_0^t are fitted with four points separately, and the PTU angles correspond to each four points are fixed pan p_0/p_1 and varied tilt t_0, t_1, t_2, t_3. Likewise, L_1^p / L_1^t are defined by points with fixed tilt t_2/t_3 and varied pan p_0, p_1, p_2, p_3 individually. After calculating the distance d_i, d_j, d_k, d_l between N_c and $\{L_0^p, L_0^t, L_1^p, L_1^t\}$, the pan and tilt of N_c can be calculated as follows:

$$
\begin{align*}
 p_N &= \left(\frac{p_2 - p_1}{d_1 + d_2}\right) d_0 + p_1 \\
 t_N &= \left(\frac{t_2 - t_1}{d_1 + d_2}\right) d_0 + t_1
\end{align*}
$$

Secondly, we utilize the interpolated PTU pose (p_N, t_N) to calculate the corresponding points for homography estimation at this non-calibrated position. From the lookup table, there already exists the corresponding display surface and fovea projector coordinates for H_{FP}^S in each calibrated PTU pose. In Fig. 6 (c), the black points are the i-th corresponding point associated with the twelve poses which interpolate the $(p_0, p_1, p_2, p_3, t_0, t_1, t_2, t_3)$ individually. After calculating the distance d_1, d_2, d_3, d_4 between N_c and $\{L_0^p, L_0^t, L_1^p, L_1^t\}$, the pan and tilt of N_c can be calculated as follows:

$$
\begin{align*}
 p_{N_i} &= \left(\frac{p_2 - p_1}{d_1 + d_4}\right) d_0 + p_1 \\
 t_{N_i} &= \left(\frac{t_2 - t_1}{d_1 + d_4}\right) d_0 + t_1
\end{align*}
$$

The intersection N_i of $L_{N_i}^p$ and $L_{N_i}^t$, is the display surface coordinate for i-th corresponding point. After applying the above procedure to all corresponding points, we can therefore estimate the homography H_{FP}^S and PTU pose for any position using the lookup table. In contrast to obtain the numerous parameters of such steerable projector system [10] which is complex and tedious, our approach is more simple and general relatively.

4.4. Infrared Camera Calibration

The touch-sensing mechanism of the i-m-Top is based on Diffused Illumination (DI). Two identical infrared (IR) cameras are used for field of view coverage of the display surface, and several IR LEDs are installed at the bottom of the i-m-Top to provide uniform IR illumination. The touch detection is achieved using computer vision approach. In one of our works, an algorithm for finger detection with high performance is proposed. However, to combine the finger touch information with the applications for interactive manipulation, we must obtain the correct position of display surface at which users touch with proper calibration between IR cameras and surface. At first, we define six corresponding points $(s_0, s_1, s_2, s_3, s_4, s_5)$ in display surface corners. Four of them (s_0, s_1, s_4, s_5) are located in the display surface corners. The remaining two points (s_2, s_3)
are at the centers of broadside boundaries, which are inside the intersection of the two IR cameras’ field of view. Since we have already calculated the homography H_{PP} between peripheral projector and display surface, six hollowed circles can be drawn in display surface coordinate system with respect to the locations $s_5 \sim s_8$, and then this image is pre-warped to peripheral projector space.

Secondly, to estimate the homographies H_{IRCH} between IR cameras and surface, we need to get the corresponding points in IR cameras. It is remembered that the IR cameras filter out the wavelength of visible light, so the projected circles are invisible to IR cameras and this calibration procedure is unable to execute automatically. But, with the help of human intervention, this calibration process can still be fulfilled in user-friendly and semi-automatic way.

As illustrated in Fig. 7, these six circles used for calibration are projected one by one, and users then put their fingers inside each circle. At this time, IR cameras capture the images and find out the finger position by finger detection algorithm. Compared with human finger, the reflecting marker with regular shape (e.g. circular marker) is recommended for better accuracy. The detected finger/marker positions are $\{c_0^L, c_1^L, c_2^L, c_3^L\}$ in left camera, and for right are $\{c_0^R, c_1^R, c_2^R, c_3^R\}$, which associate with $\{s_1, s_5, s_6, s_8\}$ and $\{s_2, s_4, s_7, s_8\}$ to calculate H_{IRC} respectively.

5. EXPERIMENTAL RESULTS

Experimental results show the running time of calibration procedures in manual and auto mode respectively. TABLE I shows the comparison of calibration running time between manual and auto mode. In general, users cannot afford too many PTU poses. The automatic algorithm consumes no human effort and lowers the processing time.

We evaluate the error for peripheral/fovea projector calibration result, and the color camera is employed for this task. Assume the display surface is calibrated with the color camera correctly, the display surface coordinate can be transformed to the camera coordinate precisely. In our experiment, the color camera resolution is 640*480.

At the beginning, 100 testing points on the display surface are selected with random and are projected sequentially by peripheral/fovea projector. The displacement between the projected testing point which is detected by the color camera and the ground truth is viewed as error, and is divided into horizontal/vertical direction. For peripheral projector, the testing points are pre-warped before projection with the homography H_{PP} and the statistical data is shown in Fig. 8(a) and TABLE II. Suffering from the effect of diffuser on display surface and non-perfect control of camera exploration, middle line pattern performs not as good as imagined. However, such negative effect on circle pattern is slighter according to uniform diffusion on circles. The calibrated result of concentric circle pattern is more accurate than the result of circle pattern because of the error-reduce property. For fovea projector, we first show the calibration errors with respect to the calibrated PTU poses only. There are multiple calibration files with regard to different PTU poses. Each time we apply projected position from the calibration file which is the closest one with the present testing point. As illustrated in Fig. 8(b) and TABLE II, circle pattern performs the best result.

Due to the limited camera resolution, the error-reduce function cannot work well in concentric circle pattern due to the fact that circle size is too small to be recognized exactly. Nevertheless, sub-pixel accuracy is achieved by our calibration algorithm for either peripheral projector or fovea

<table>
<thead>
<tr>
<th>Mode</th>
<th>PP (1 pose)</th>
<th>FP (36 poses)</th>
<th>FP (300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>1–2 min</td>
<td>40–60 min</td>
<td>X</td>
</tr>
<tr>
<td>Auto</td>
<td>6 sec</td>
<td>~4.8 min</td>
<td>~40 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circle Pattern</th>
<th>Concentric Circle Pattern</th>
<th>Middle Line Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>FP</td>
<td>PP</td>
</tr>
<tr>
<td>Average</td>
<td>0.112</td>
<td>0.180</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.073</td>
<td>0.093</td>
</tr>
</tbody>
</table>

Fig. 7. IR camera calibration by semi-automatic approach.
projector, and the satisfactory result is presented under any kind of feature patterns. Using the result of the calibrated PTU poses, we show the interpolation result of mapping function on non-calibrated position.

As illustrated in Fig. 9(a), obviously, the accuracy of calibration results are successfully improved when the sampling interval of PTU pose become denser. However, with denser sampling interval, the processing time of entire calibration procedure increases rapidly (Fig. 9 (b) (c)). To get a balance between calibration quality and processing time, we select 64 PTU angles as the sampling interval.

5. CONCLUSIONS

We present a novel automatic calibration algorithm of multi-resolution tabletop display system for improving the performance and accuracy. Geometric transformation between projectors and the display surface is obtained by the assistance of one color camera and structured light patterns. The proposed algorithms can achieve the two objectives: (1) the keystone correction and the misalignment elimination (between the peripheral projector and fovea projector) and (2) the fovea projector is capable of projecting to the desired position on surface. The experimental results demonstrate that the proposed algorithms successfully lower the calibration error and computational cost.

REFERENCES