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In this study we use our methode to prove the local

existence of solution to Emden-Fowler type semilinear
wave equation in bounded domain in 1-space dimension.

A2
&
R

Emden-Fowler type, semilinear wave equation.



On the existence of solution to Emden-Fowler type semilinear wave
equation in bounded domain in 1-space dimension

g — Upy = uP

Meng-Rong Li
Department of Mathematical Sciences National Chengchi University

1 Introduction

We will consider the existence of solutions for the initial value problem for the
Emden-Fowler type semilinear wave equation of the form

Uy — gy = f(u) in [to,T) x [R1, R, (1.1)

where to > 0, f: R — Ris a real valued function. The case f (u) =uP, p>1
corresponds to the classical Emden-Fowler equation t?u” = uP.

The existence result to the relative equation uy — uy, = f(u) is proved
[Li3] and the positive solution blows-up in finite time under some conditions
[Li2], we want to use another method to estimate the life-span of the solution
to Emden-Fowler type semilinear wave equation (1.2) and later to study the
Emden-Fowler type semilinear wave equation (1.3)

t2Usy — Uge = uP 0 [to,to +T) x [R1, Ra], (1.2)
Uy — uge =eu? in [to,to + 1) x [R1, Ra), (1.3)
u(tg,-) = ugp € H* (Ry, Ro) N Hy (Ry, Ra),

Ut (t07 ) = U1 € H(% (R17 RQ) 9

but it is not clearly whether it is true for any p > 1 7 If so, we would want to
estimate the blow-up time and the blow-up rate under such a situation in the
future.

It is also important to study the asymptotic behavior of the solution u, uy,
the velocity and the rate of the approximation for € approaches to zero. Such
questions are also not easy to answer and the case for the ordinary differential
equation



2 =P, u(to) =uo, u (to)=u,

should be studied. We have studied the blow-up behavior of the solution for
semilinear wave equation and got some estimates on blow-up time and blow-up
rate [Li4] but it is difficult to find the real blow-up time (life-span). Further
literature could be fund in [S], [R], [W1] and [W2].

In this study we hope that our ideals used in [Li2], [Lid], [Li5], [Li7], [Li8],
[LiLinShieh], [ShiehLi] and [SLLLW] can do help us dealing such problem
(1.1) on our topics.

2 Fundamental Lemma

From the local Lipschitz functions, p > 1 the initial-boundary value semilinear
wave equation

utt_uxa: :up (2.1)

possesses a unique solution in H1 := C*! (0, T,Hj (R, Rg))ﬂC’2 (0, T, L? (Ry, Rg))
[Li1], but for the equation (1.2) of Emden-Fowler type has to be overcome.

Lemma 2.3: Suppose that uw € H1 is a weakly positive solution of (2.1)
with E(0) =0 for p > 1, then for a(0) > 0 we have:
E(0) =0 for p> 1, then for a(0) > 0 we have:

i) a € C2(RT) and E(t) = E(0) Vt € [0,T).
1) a/(t) >0 Vt €[0,T), provided a/(0) > 0.
i) al(t) >0 Vt € (0,T), if ar(0) =0.

iv) For a’ (0) < 0, there exists a constant to > 0 with o/ (t) >0 Y ¢ > 1
and al(tg) = 0.

(
(
(
(

Note that the conclusions are not always valid for equation (1.2), which
assertions remain true? It should be proven in another method.

Lemma 2.4: Suppose that w is a positive weakly solution in H1 of
equation (2.1) with u(0,-) = 0 = u(0,-) in L?(Ry, Re). For p > 1, we have
u=01in H1.

Note that the result in lemma 2.4 could perhaps not be applied to the case
of equation (1.2).



3 Estimates for the Life-Span
Estimates for the Life-Span of the Solutions of (2.1) under Null-
Energy
We hav studied the case that E(0) =0, p > 1 and divide it into two parts
(i) a(0) > 0, a/(0) > 0 and (i) a(0) > 0, a/(0) < 0.
Remark 3.

1) The local existence and uniqueness of solutions of equation (2.1) in H1
are known [Li2].

2) For p > 1 and E(0) = 0, the life-span of the positive solution v € H1 of
equation (2.1) is bounded.

Estimates for the Life-Span of the Solutions of equation (2.1) under
Negativ-Energy

We use the following result and those argumentations of proof are not true
for positive energy, so under positive energy we need another method to show
the similar results.

Lemma 3: Suppose that uw € H1 is a positive weakly solution of equation
(2.1) with a(0) > 0 and E(0) < 0. Then (i) for a/(0) > 0 , we have a/(t) >
0Vt > 0;(ii) for a/(0) < 0 , there exists a constant t; > 0 with a’ (t) > 0

Yt > t1, a/(t1) =0 and

. a’ (0)
t<t=— : ,
(p—1) (6% = E(0))
where 4 is the positive root of the equation 2/\5117"”"‘1—(1) +1)r*+(p+1)E(0) =
0.

4 Positive solutions of equation (2.1) near blow-
up solutions

In the furture we want to utilize our ideals used in [Li2], [L44], [Li5], [Li7], [Li8],
[LiLinShieh], [ShiehLi] and [SLLLW] to deal problem (1.2) on our topics un-
der some conditions and want to obtain similar conclusions resulted from (2.1)
later:

Theorem 4.1: Suppose that v € H1 is a weakly positive solution of
(2.1) with E(0) <0 for p > 1, then for a(0) > 0 we have: the weakly positive
solution u of (2.1) blows up in finite time.



Theorem 4.2: Suppose that v € H1 is a weakly positive solution of
(2.1) with E(0) =0 for p > 1 we have:
the weakly positive solution u of (2.1) blows up in finite time.

Theorem 4.3: Suppose that v € H1 is a weakly positive solution of
(2.1)with E(0) > 0 for p > 1, then for a(0) > 0 we have: the weakly positive
solution u of (2.1) blows up in finite time.

5 Existence of solutions to the equation (1.2) in
H2

After some long redundant argumentation using Banch fixed point theory we
can obtain the existence of solutions for equation (1.2).

Theorem 5.1 There exist positive T' > 0 and u in H2 satisfing equation
(1.2), where H2 is the space

H2 :=C" (to,to + T, Hj (R, R2)) N C? (to,to + T, L* (R1, Ry)) .

Lemma 52 [LM, p95] For Ug € H& (Rl,Rg) , U1 € L2 (Rl, Rg) and h €
Wt (tg,to + T, L? (Ry1, R2)) , the initial-boundary value problem for the linear
wave equation of the form

Upt — Ugg + N (t,CC) =0, (51)
U (t07 ) = Uo,

ug (to, ) = u1,
posseses exactly one solution u in H2.

Lemma 5.3 Suppose that u is the solution of the linear wave equation
(51) and ug € H& (Rl, Rg) , U1 € L? (Rl,Rg) and h e Whi (to,to + T, L? (Rl, Rg)) R
then we can have the estimate

R2
|| Dull, (¢ / (u? +u) (t,z) dz
t Ro
/ )+ up (z )2) d:er/ / h(r,z)? dadr.
to Ry




Sketch proof for the Theorem:

Step 1: Take a transformation t = €°, u(t,z) = v(s,x) then u; = v, -
t~1, t2uy = vss — v, and the equation (1.2) can be rewritten into the form

Vss — Ugg = Vs T ,Up’
v (80, 2) = ug (to,x) = v (Inty,x) := vg (),

vs (80, 2) = sotous (),

where sg = Intg.

Step 2: Set vg (s,2) = ug (to, z) = v(Intg,z) := vy (x) € H} (Ry, Ra), v1 (s,2) :=

stous (z). Suppose that vs (s, ) be the solution for the linear wave equation

Vgs — Ugz = Vis + 'U(Zj) - tOul + U& (52)

v (80,x) = vo (), vs (S0,2) = Sotour ().

Step 3: Checking vis+vh € Wi (O,T7 L? (Ry, Rg)) , by Lemma 5.2, Lemma
5.3, vp € Whi (O,T, L? (Rl,Rg)) and

[ Dva[5 (s)

\/ s3tdus ( (z)? +ug (z ))der s —80) \/ (tour +vg)(x)2dx.

setting v,,+1 the solution of the linear wave equation

Vgs — Ugg = Uns + ,UIT?” (53)

v (80, x) = vo (), vs (S0,2) = Sotour ().

Step 4. To check wv,s + vE € Wi (O,T, L? (Rl,Rg)) , by Lemma 5.2 and
Lemmab.3, v, € Wht (O,T7 L? (Rl,Rg)) and

||Dvn+1||2 (s)

\/ sotoul )+ up (z dm +/ \/ (Uns + v8) (r, z)* dadr.




Step 5. Under some constructions, prove that v, is a Chauchy sequence in
H2. Then the local existence result for the equation (5.1) in H2 can be got,
and than local existence result for equation (1.2) also can be abtained.

Remark 1: The nonexistence of global solution in time for the equation
(1.2) is an interesting problem, in some days later we will study it and estimate
life-spans of T, of u. of (1.3) and T of u of (1.2).

Remark 2: The decade rate of the difference of life-spans of T, of u. of (1.3)
and T of u of (1.2), can not be estimated very well for ¢ — 0; thus it will be a
good topic on asymptotic behavior near the blow-up solutions.
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