English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88531/118073 (75%)
Visitors : 23458459      Online Users : 83
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 學術期刊 > 資管評論 > 期刊論文 >  Item 140.119/100251
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/100251


    Title: Dynamic Programming Variant in Evolution Strategies for Production Allocation Problems
    Other Titles: 應用動態規劃式演化策略解決生產分配問題
    Authors: 侯永昌;張應華
    Hou, Young-Chang;Chang, Ying-Hua
    Keywords: 演化策略;生產分派問題;動態規劃式演化策略;路徑編碼法;路徑突變法
    Evolution Strategies;Production Allocation Problems;DP Variant Evolution Strategies;Path Encoding Method;Path Mutation
    Date: 2003-06
    Issue Date: 2016-08-16 15:16:06 (UTC+8)
    Abstract: 演化策略(evolution strategies)通常應用於目標變數為實數值的最佳化問題上,其主要是利用突變(mutation)的方式於解答空間中搜尋出最好的滿足解,利用類似的演化過程有許多組合最佳化的問題合適且成功地被解決,如二次指派問題(quadratic assignment problems),工程設計最佳化問題(engineering design optimization problems)等等,但一般的演化計算技術應用於這些問題時,將會浪費很多的時間於處理在演化過程中獲得無效解的情形上,以致於造成演算法效率不彰。本研究提出一種新的染色體編碼方式,稱為路徑編碼法(the path-encoding method),其修改動態規劃的路徑搜尋概念於組合演化策略(combinatorial evolution strategies)上,以提高其演化效能,並以NP-hard的生產分派問題(production allocation problems)來當成測試的實例,在實驗中對路徑編碼法、組合編碼法(combination-encoding method)、懲罰編碼法(penalty-encoding method)和整數規劃法(integer programming)等四種方法做一比較,結果顯示出本研究所提之路徑編碼法效果最好,其次是組合編碼法,再者是懲罰編碼法,最後是整數規劃法,其主要的原因是路徑編碼法可以有效地縮小搜尋解答空間的範圍,以加快收斂的速度。
    Evolution strategies are applied to optimize real-valued vectors of objective variables. These strategies rely primarily on mutation to explore the solution search space. Many combinatorial optimization problems such as quadratic assignment problems, engineering design optimization problems, and others can be successfully solved by analog evolution. This evolutionary algorithm wastes much time in managing invalid solutions and is typically less efficient.This paper presents a new approach, called the path-encoding method, which modifies the path searching idea of dynamic programming for combinatorial evolution strategies to enhance the performance of evolutionary process. The NP-hard production allocation problem is used to evaluate the effectiveness of the approach. This experiment compares the proposed approach to the combination-encoding method, the penalty-encoding method and integer programming. The computed results show that the proposed approach is always feasible and outperforms the others because it narrows the solution search space.
    Relation: 資管評論, 12, 1-16
    MIS review
    Data Type: article
    Appears in Collections:[資管評論] 期刊論文

    Files in This Item:

    File Description SizeFormat
    12-1-16.pdf1032KbAdobe PDF410View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback