English  |  正體中文  |  简体中文  |  Post-Print筆數 : 20 |  Items with full text/Total items : 90058/119991 (75%)
Visitors : 24096823      Online Users : 1699
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 學術期刊 > 資管評論 > 期刊論文 >  Item 140.119/100258
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/100258


    Title: 以網站探勘技術為基礎之電子目錄上推薦服務之研究
    Other Titles: A Study of Recommendation Service on E-Catalog Based on Web Mining Technique
    Authors: 林熙禎;許益誠
    Lin, Shi-Jen;Hsu, Yi-Chen
    Keywords: 電子商務;電子目錄;網站探勘;推薦服務;個人化
    E-commerce;E-catalog;Web Mining;Recommendation service;Personalization
    Date: 2004-12
    Issue Date: 2016-08-16 15:17:28 (UTC+8)
    Abstract: 隨著電子商務的發展,不論是B2B或者是B2C的商業模式,電子目錄儼然已經成為買賣雙方的主要介面。電子目錄不再只是提供商品的規格,更是提供客戶服務的重要媒介。然而,一個擁有豐富資訊的網站,如何對於不熟悉網站架構的使用者,或對購買商品特性不熟悉的使用者,協助他們做出採購的決策呢?本文試圖透過網站探勘技術,瞭解使用者的瀏覽目的,並將此探勘所得到的瀏覽樣式,推薦給具有相同需求的使用者做為參考。同時,將推薦分為同類商品、相關產品、以及其他產品資訊說明三種方式推薦,讓使用者更清楚推薦原因。本文以網站探勘的技術為基礎,提出概念限制型參考(CCR, Conceptual Constrained Reference)的交易識別方式,來確認交易為某類責訊的瀏覽,藉此確認使用者目的。之復,利用改良的混合型順序性(MIXSEQ)相似度比對,對瀏覽路徑做叢集(Clustering)處理,以做為推薦的資料集。在推薦策略方面,先將網頁做分類,區分為內容型網頁與導覽型網頁,推薦時以內容為主要的推薦網頁,以提高推薦實用性。
    As the E-Commerce prevalence, E-catalog has become an important interface to a company through which customers interact, regardless of B2B or B2C. E-catalog not only provides product information, but becomes the important media of service providing for customers. However, how does an E-catalog assist casual/unfamiliar users with such rich information in their purchasing decision making? The challenge for Websites is how we know users needs? Thus, we will apply Web Mining technology to understand user's needs and get usage pattern from previous browsing experience. In this paper, we propose a new transaction identification, Conceptual-Constrained Reference (CCR), for understanding the goal of users in browsing the e-catalog. Furthermore, we use the MIXSEQ similarity measure for web-usage clustering to create the recommendation dataset. Finally, we will classify pages into two types-content pages and navigation pages, and recommend those pages which are content types for users when they are browsing.
    Relation: 資管評論, 13, 59-74
    MIS review
    Data Type: article
    Appears in Collections:[資管評論] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML406View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback