政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/100737
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 86525/115230 (75%)
造访人次 : 23149768      在线人数 : 117
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 企業管理學系 > 期刊論文 >  Item 140.119/100737


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/100737


    题名: Automated Extraction of Welds from Digitized Radiographic Images Based on MLP Neural Networks
    作者: 唐揆
    Liao, T. W.;Tang, Kwei
    贡献者: 企管系
    日期: 1997
    上传时间: 2016-08-25 14:12:23 (UTC+8)
    摘要: It is desired to automate inspection of welding flaws. Automated extraction of welds forms the first step in developing an automated weld inspection system. This article presents a multilayered perceptron (MLP) based procedure for extracting welds from digitized radiographic images. The procedure consists of three major components: feature extraction, MLP-based object classification, and postprocessing. For each object in the line image extracted from the whole image, four features are defined: the peak position (x1), the width (x2), the mean square error between the object and its Gaussian intensity plot (x3), and the peak intensity (x4). Fiftyone training samples were used to train MLP neural networks. The training of MLP classifiers is discussed. Trained MLP neural networks are subsequently used to test unlearned feature patterns and to identify whether the patterns are welds or not. Postprocessing is performed to remove noises (misclassified nonweld objects) and restore the continuity of weld line (discontinuity due to missed weld objects). Test results show that the procedure can successfully extract all welds (100%) from 25 radiographic images.
    關聯: Applied Artificial Intelligence, 11(3), 197-218
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1080/088395197118226
    DOI: 10.1080/088395197118226
    显示于类别:[企業管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    197-218.pdf2288KbAdobe PDF282检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈