English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88866/118573 (75%)
Visitors : 23563876      Online Users : 332
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/101112


    Title: 網路資料庫在新成屋及預售屋 精準行銷之運用分析
    Authors: 陳韻如
    Contributors: 林祖嘉
    陳韻如
    Keywords: 網站大數據
    忠誠訪客
    精準行銷
    看屋成交率
    Big data
    Repeat Visitors(Returning Visitors)
    Precision Marketing
    Open Houses Sales Closing Ratio
    Date: 2016
    Issue Date: 2016-09-02 00:00:56 (UTC+8)
    Abstract: 自2003 年以來,房地產市場面臨不少景氣波動波段,在2016 年實施房地合
    一稅之後,更開始醞釀一個新的產業結構。目前建商及代銷業者在銷售時最大的
    困境,便是難以取得潛在及顯在買方的相關資訊,無法洞悉買方從何而來,無法
    掌握買方的心態。在過去傳統行銷媒體效果已經逐漸式微的情況下,該運用何種
    方式與買方接近,適當有效地投送媒體預算,已經成為維繫房地產業者生存的當
    務之急。
    本研究嘗試運用Y 網站大數據資料庫的分析,搜集買方資訊,並以台灣北、
    中、南不同區位及不同型態新建案為案例,分析案例在網站上的訪客反應,藉由
    新建案訪客來源縣市、訪客造訪前一頁及忠誠訪客行為等不同面向的分析,過濾
    出精準的忠誠訪客,再針對這些目標客戶採取積極性行銷,將行銷資源集中在這
    些相對高意願的訪客,以達到精準行銷的目的,達成銷售預期。
    經由Y 網站對四個案例的分析顯示,台北買方長期投資的選擇區位似乎有南
    移跡象。本研究中的案例皆位於六都,顯示台北客對於六都其他都會區的新建案
    都抱持頗高的查閱意願,顯示台北客的潛在購買意願高。
    另,關注新建案的買方來源的前一頁,約有六成以上來自於Google,在行
    銷預算的配置上,應可加強Google 的預算比例。
    新建案的買方,無論北部、中部或是南部,其忠誠客戶的比例皆約佔兩成左
    右,新建案行銷時應集中加強行銷強度,將忠誠買方從線上導向實體的預約看屋
    行為,提升看屋成交率。
    Real Estate market has gone through several economic fluctuations since
    2003, and the industry is currently undergoing restructuring after the
    consolidated housing-and-land income tax reformed in 2016. The biggest
    predicament confronted by both of the real estate developers and
    advertisement sale-agents is often difficult to gather the list and the
    information of prospective and obvious buyers, and clearly understand their
    minds. To stay in business, the top priority now is: how to plan and manage a
    cost-effective marketing spend to approach buyers when traditional methods
    of marketing have become less effective.
    This thesis focuses on the application of web analytics from Y website to
    gather buyer’s information, and demonstrated with samples from the different
    areas across North, Central, and South region of Taiwan, also different types of
    new construction real estates; by further studying the geographic, referral
    traffics, and sticky contents and hits of returning visitors, and further screen out
    the shortlist target buyers from the repeat visitors, then focus the marketing
    resources to take proactive sales approach and precision marketing in
    targeting the most potential buyers and meet the sales expectation.
    The web analytics from Y website on these four cases indicates that Taipei
    web visitors’ favored long-term investment choice is shifting toward South. All
    samples from the 6 special municipalities in Taiwan shows web visitors from
    Taipei are most interested in new construction real estates located in the other
    5 special municipalities; even higher than web visitors from its own district area,
    which reveals that there are more potential buyers in Taipei, and the
    developers in those 5 special municipalities should try to distribute more
    marketing resources in Taipei.
    Similarly, study shows up to 60% of the referral traffics are from Google, it
    is suggested to allocate more marketing funds in Google.
    Statistics from across all region also articulate that about 20% of closing
    sales are repeat visitors, the sellers should screen out the shortlist target
    buyers from the repeat visitors, then focus the marketing resources to take
    proactive sales approach in getting buyers to show up in open-house for
    on-site sales to follow up and increasing the closing ratio.
    Reference: 圖書(Books)
    (1)Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die、陳琇玲譯,2014,『預測分析時代-讓數據告訴你,誰會買、誰說謊、誰會離職、誰會死!』初版,台北,大牌出版/遠足文化事業股份有限公司

    (2)Brian Clifton(2010),黃志雄、戴文彬、陳誼峰譯,『流量的秘密』初版,台北,松崗資產管理,

    (3)曾文龍(1993),『房地產過去、現在、未來』,台北,大日出版社

    (4)周俊吉(2015),『2015台灣地區房地產年鑑』初版,政治大學商學院信義不動產研究發展中心編著,台北,行義文化出版

    (5) Viktor Mayer-Schonberger、Kenneth Cukier(2013),林俊宏譯,『大數據Big Data:A Revolution That Will Transform How We Live, Work, and Think』,台灣,天下文化出版

    (6)張明義、許惠瑜,2013,『完銷力』,台北,詹氏書局

    (7)城田真琴(2013),『Big Data大數據的獲利模式:圖解‧案例‧策略‧實戰』,鐘慧真與梁世英譯,經濟新潮社

    (8)胡世忠(2013),『雲端時代的殺手級應用:Big Data海量資料分析』,天下雜誌

    (9)財團法人資訊工業策進會前瞻所(2014),『巨量資料簡介』,取自http://www.nacs.gov.tw/NcsiWebFileDocuments/3c2136cf0801ea10c866aaa770aa3e94.pptx

    (10)劉文良(2010),『顧客關係管理:新時代的決勝關鍵,碁峯資訊股份有限公司』


    研究報告或技術報告(Technical Reports)
    (1)亞太地區數位趨勢報告(The APAC Digital report) Adobe ,CMO Council,Paul Robson(2015)

    (2)2016年全球IT行業報告(IDC FutureScape: Worldwide IT Industry 2016 Predictions- Leading Digital Transformation) IDC,(2016)

    (3)2016:決定客戶時代成敗的十大關鍵成功因素(The 2016 Top 10 Critical Success Factors To Determine Who Wins And Who Fails In The Age Of The Customer)Forrester(2016)

    (4) Gartner研究報告(2015)

    報紙報導(Newspapers)
    (1)蘇蘅(2014),『擁抱大數據 與新石油共舞』,聯合報,取自http://udn.com/NEWS/OPINION/OPI4/8767536.shtml。英文部分

    電子資源(Electronic Documents)
    (1) 智庫百科(http://wiki.mbalib.com/zh-tw)

    (2) Alexa排名網站(www.alexa.com)
    Description: 碩士
    國立政治大學
    經營管理碩士學程(EMBA)
    99932091
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0999320911
    Data Type: thesis
    Appears in Collections:[經營管理碩士學程EMBA] 學位論文

    Files in This Item:

    File SizeFormat
    091101.pdf5825KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback