English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140887 (78%)
Visitors : 46305000      Online Users : 1246
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/101172


    Title: 消除電離層高階項誤差以提昇GPS精密單點定位精度之研究
    Improving the Accuracy of GPS Precise Point Positioning by Eliminating the Higher Order Ionospheric Refraction Effects
    Authors: 洪婉綺
    Hung, Wan Chi
    Contributors: 林老生
    Lin, Lao Sheng
    洪婉綺
    Hung, Wan Chi
    Keywords: 全球定位系統
    精密單點定位
    電離層高階項誤差
    雙頻
    Global Positioning System (GPS)
    Precise Point Positioning (PPP)
    Higher Order Ionospheric Refraction Effects
    Dual Frequency
    Date: 2016
    Issue Date: 2016-09-02 00:51:53 (UTC+8)
    Abstract:   全球定位系統(Global Positioning System,GPS)雙頻觀測資料經過處理後,其精密單點定位(Precise Point Positioning,PPP)之精度可達公分等級。然而,對於精度要求較高之應用,如控制測量、地殼變形監測等,公分級精度尚嫌不足。欲進一步提昇PPP之精度,必須考慮電離層第二、三階等高階項誤差之改正。本研究欲探討電離層高階項誤差對於台灣地區PPP之影響,因此本研究之目的為探討(1)不同方向誤差(2)太陽黑子高、低峰期(3)不同季節(4)不同地區,改正電離層高階項誤差前、後之精度效益。

      實驗使用之主要軟體與服務有:(1)RINEX_HO,由巴西São Paulo State University所開發,用以估計電離層高階項誤差,並產製改正電離層高階項誤差後之GPS RINEX觀測檔。(2)gLAB(global navigation satellite system –LABoratory),由gAGE(Research group of Astronomy and GEomatics Technical University of Catalonia in Spain)所開發,可進行PPP及誤差計算。(3)AUPOS,由Geoscience Australia所提供之免費線上GPS資料處理服務,可解算地表上任意位置坐標。實驗資料選擇台灣森泰儀器公司雙星eGPS差分訊號雲端服務網(Civil-NET)中四個觀測站2014年之觀測資料,以及五個台灣衛星追蹤站2009年至2015年之觀測資料,和精密星曆等其他資料。根據實驗結果發現,改正電離層高階項誤差,對於PPP之影響有幾點特性:(1)南北方向定位精度之影響量最大,改正前後差異最大達6.8mm。(2)太陽黑子低峰期觀測資料改正效果較佳,改正精度提昇比例為43%。(3)夏季觀測資料精度提昇效果最佳,提昇比例約為40%。(4)精度提昇效果最佳之測站為墾丁KDNM衛星追蹤站,定位精度提昇之比例約為48%。定位精度提昇效果最佳之時段為太陽黑子低峰時期之夏季,而提昇效果較佳之地區為南部觀測站。同時符合這些條件之觀測資料,在改正電離層高階項誤差後,精度提昇比例可達九成。
      The precise point positioning (PPP) accuracy can reach centimeter level using global positioning system (GPS) dual-frequency data. However, centimeter level accuracy is insufficient for high accuracy applications, such as control surveying, deformation monitoring, etc. To improve the accuracy of PPP, higher order ionospheric refraction effects must be taken into account. To investigate the effects on PPP accuracies in Taiwan caused by higher order ionospheric refraction errors, the purposes of this research are to evaluate the accuracy of PPP after higher order ionospheric refraction errors are corrected (1)of errors in different directions (2)using observation data in low or higher solar activity period (3)using observation data of different seasons (4) using observation data of different areas.

      There are two programs and one service applied in this paper: RINEX_HO, gLAB (global navigation satellite system-LABoratory) and AUPOS. (1)RINEX_HO, developed by São Paulo State University in Brazil, can estimate higher order ionospheric refraction terms and produce a corresponding corrected GPS observation file. (2)gLAB, developed by gAGE (Research group of Astronomy and GEomatics Technical University of Catalonia in Spain), can perform precise point positioning and calculate position errors. (3)AUPOS, provided by Geoscience Australia, can produce coordinates of observation stations. Experiment data sets are the observation data from 4 stations of Civil-NET of year 2014 and from 5 satellite tracking stations of Taiwan region of year 2009 to 2015, precise ephemeris and other data of international global navigation satellite system service (IGS). According to the experiment results, there are several characteristics after correcting higher order ionospheric refraction errors: (1)The most significant effects on the receiver positions occur in the north-south direction, and the largest difference between uncorrected and corrected PPP results is 6.8 mm. (2)The accuracies of corrected PPP results improve when the solar activity is low. About 43% PPP results in low solar activity improve after corrected. (3)Summer observation data have better outcome after higher order ionospheric refraction errors. About 40% of PPP results improve after corrected. (4)The observation data of KDNM station can get better PPP results after corrected. About 48% of PPP results improve after corrected. The best situation of correcting higher order ionospheric refraction errors is the observation data of southern stations in summer when the solar activity is low. Under these conditions, 90% of observation data PPP accuracy improved after correcting higher order ionospheric refraction errors.
    Reference: 一、中文參考文獻
    田英國、郝金明、謝建濤、張力洋、薄軍偉,2014,「開源精密單點定位軟體 gLAB 定位精度分析」,『全球定位系統』,39(1):34-36。
    朱春春、李征航、屈小川、申小平,2015,「高階電離層延遲對 GPS 雙差觀測值和基線向量的影響」,『大地測量與地球動力學』,35(1):81-86。
    李征航,2002,「全球定位系統(GPS)技術的最新進展,第一講:多功能衛星導航定位服務系統」,『測繪資訊與工程』,27(1):19-22。
    李征航、吳秀娟,2002a,「全球定位系統(GPS)技術的最新進展,第四講:精密單點定位(上)」,『測繪資訊與工程』,27(5):34-36。
    李征航、吳秀娟,2002b,「全球定位系統(GPS)技術的最新進展,第四講:精密單點定位(下)」,『測繪資訊與工程』,27(6):31-35。
    李軍、高詠梅,2010,「GAMIT, GIPSY 和 BERNESE 软件解算结果的比较研究」,『全球定位系统』,35(3):5-9。
    邱冠維,2009,「利用精密單點定位進行GPS浮標近即時精密定位」,國立成功大學測量及空間資訊研究所碩士論文:台南。
    林老生,2009,「GPS精密單點定位在地籍測量之應用」,『台灣土地研究』,12(2):1-25。
    黃勁松、李征航,2005,『GPS測量與數據處理』,武漢:武漢大學出版社。
    黃俊穎,2009,「運用臺灣自主電離層數值模式研究電離層赤道異常現象」,國立中央大學太空科學研究所碩士論文:桃園。
    張小紅、劉經南,2006,「基於精密單點定位技術的航空測量應用實踐」,『武漢大學學報資訊科學版』,31(1):19-22。
    張明、王莎,2012,「基於PPP技術的震後臺站位移監測與分析」,『測繪資訊與工程』,37(1):2-14。
    葉世榕、張雙成、劉經南,2008,「精密單點定位方法估計對流層延遲精度分析」,『武漢大學學報資訊科學版』,33(8):788-791。
    詹長根、彭琳、胡凱,2005,「精密單點定位技術在地籍測繪中應用的展望」,『測繪資訊與工程』,30(2):40-41。

    二、外文參考文獻
    Bassiri, S., and Hajj, G. A., 1993, “Higher-order ionospheric effects on the global positioning system observables and means of modeling them.”, Manuscripta geodaetica, 18: 280-289.
    Brunner, F. K., and Gu, M., 1991, “An improved model for the dual frequency ionospheric correction of GPS observations.” Manuscripta geodaetica, 16(3): 205-214.
    Budden, K. G., 1988, The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere, Cambridge: Cambridge University Press.
    Cander, L. R., 2008, “Ionospheric research and space weather services.”, Journal of atmospheric and solar-terrestrial physics, 70(15): 1870-1878.
    Chapman, S., 1931, “The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth.”, Proceedings of the Physical Society, 43(1): 26.
    Datta‐Barua, S., Walter, T., Blanch, J., and Enge, P.. 2008, “Bounding higher‐order ionosphere errors for the dual‐frequency GPS user.”, Radio Science, 43: RS5010.
    Davies, K., 1990, Ionospheric radio, London: Peter Peregrinus Ltd.
    El-Rabbany, A., 2002, Introduction to GPS: the global positioning system, U.S.: Artech House.
    Elmas, Z. G., Aquino, M., Marques, H. A., and Monico, J. F., 2011, “Higher order ionospheric effects in GNSS positioning in the European region.”, Annales Geophysicae, 29(8): 1383-1399.
    Fritsche, M., Dietrich, R., Knöfel, C., Rülke, A., Vey, S., Rothacher, M., and Steigenberger, P., 2005, “Impact of higher‐order ionospheric terms on GPS estimates.”, Geophysical Research Letters, 32: L23311.
    Héroux, P., and Kouba, J., 2001, “GPS precise point positioning using IGS orbit products.”, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(6): 573-578.
    Hartmann, G., and Leitinger, R., 1984, “Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz.”. Bulletin géodésique, 58(2): 109-136.
    Hathaway, D. H., 2015a, “The solar cycle.”, Living Reviews in Solar Physics, 12(1): 1-87.
    Hocke, K., 2008, “Oscillations of global mean TEC.”, Journal of Geophysical Research: Space Physics (1978–2012), 113: A04302.
    Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2007, GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more, Germany: Springer Science and Business Media.
    Hoque, M. M., and Jakowski, N., 2008, “Estimate of higher order ionospheric errors in GNSS positioning.”, Radio Science, 43(5): RS5008.
    Kalita, J. Z., Rzepecka, Z., and Szuman-Kalita, I., 2014, “The application of Precise Point Positioning in Geosciences.”, Paper presented at the Proc. of the 9th International Conference Environmental Engineering, Vilnius, Lithuania, May 22-23.
    Kedar, S., Hajj, G. A., Wilson, B. D., and Heflin, M. B., 2003, “The effect of the second order GPS ionospheric correction on receiver positions.”, Geophysical Research Letters, 30(16): SDE.
    Kivelson, M. G., and Russell, C. T., 1995, Introduction to space physics, U.S.: Cambridge university press.
    Klobuchar, J., 1996, “Ionospheric effects on GPS.”, Global Positioning System: Theory and applications., 1: 485-515.
    Langley, R. B., 1998, “Propagation of the GPS Signals” pp. 111-149 in GPS for Geodesy, edited by Kleusberg, A., and Teunissen, P. J. G., eds., Germany: Springer.
    Liang, M. C., Li, K. F., Shia, R. L., and Yung, Y. L., 2008, “Short‐period solar cycle signals in the ionosphere observed by FORMOSAT‐3/COSMIC.”, Geophysical Research Letters, 35(15): L15818.
    Lin, C.-H., Liu, C., Liu, J., Chen, C., Burns, A., and Wang, W., 2010, “Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT‐3/COSMIC.”, Journal of Geophysical Research, 115: A03308.
    Liu, L., Zhao, B., Wan, W., Ning, B., Zhang, M. L., and He, M., 2009, “Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements.”, Journal of Geophysical Research, 114: A02302.
    Marques, H., Monico, J., and Aquino, M., 2011, “RINEX_HO: second-and third-order ionospheric corrections for RINEX observation files.”, GPS solutions, 15(3): 305-314.
    McNamara, L. F., 1991, The ionosphere: communications, surveillance, and direction finding: Florida: Krieger publishing company.
    Mendillo, M., Huang, C.-L., Pi, X., Rishbeth, H., and Meier, R., 2005, “The global ionospheric asymmetry in total electron content.”, Journal of atmospheric and solar-terrestrial physics, 67(15): 1377-1387.
    Min, K., Park, J., Kim, H., Kim, V., Kil, H., Lee, J.,Rentz, S., Lühr, H., and Paxton, L., 2009, “The 27‐day modulation of the low‐latitude ionosphere during a solar maximum.”, Journal of Geophysical Research: Space Physics, 114: A04317.
    Odijk, D., 2002, Fast precise GPS positioning in the presence of ionospheric delays, Doctoral dissertation, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft.
    Øvstedal, O., Kjørsvik, N., and Gjevestad, J., 2006, “Surveying using GPS precise point positioning.”, Paper presented at the XXII International FIG Congress, Munich, Germany, October 8-13.
    Petrie, E. J., Hernández-Pajares, M., Spalla, P., Moore, P., and King, M. A., 2011, “A review of higher order ionospheric refraction effects on dual frequency GPS.”, Surveys in Geophysics, 32(3): 197-253.
    Sanz, J., Juan, J., and Hernández-Pajares, M., 2010, GNSS Data Processing: Fundamentals and Algorithms (Vol-I), and Laboratory Exercises (Vol-II), The Netherlands: ESA Communications.
    Schunk, R., and Nagy, A, 2009, Ionospheres: physics, plasma physics, and chemistry: New York: Cambridge university press.
    Wanninger, L., 1994, Der Einfluß der Ionosphäre auf die Positionierung mit GPS, Doctoral dissertation, Department of Surveying, University of Hannover, Germany.

    三、網頁參考文獻
    森泰儀器公司,2015,雙星eGPS差分訊號雲端服務網(Civil-NET)。http://60.249.51.150:8080/geopp_gnweb/gnweb.html,取用日期:2015年11月27日。
    Geoscience Australia., 2016, AUPOS - Online GPS Processing Service. Retrieved May 20, 2016, from Geoscience Australia on the World Wide Web: http://www.ga.gov.au/bin/gps.pl
    Hathaway, D., 2015b, The Sunspot Cycle. Retrieved November 22, 2015, from Hathaway, D. on the World Wide Web: http://solarscience.msfc.nasa.gov/SunspotCycle.shtml
    Silver. M., 2013, A Comparison of Free GPS Online Post-Processing Services. Retrived May 20, 2016 from GPS World on the World Wide Web: http://gpsworld.com/a-comparison-of-free-gps-online-post-processing-services/
    Rovira Garcia. A., 2010, Design, implementation and testing of GPS data processing modules for GNSS navigation. Retrived March 7, 2016 from UPC. on the World Wide Web: http://upcommons.upc.edu/bitstream/handle/2099.1/8985/1%20PFC%20%20Memory.pdf
    Description: 碩士
    國立政治大學
    地政學系
    103257029
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103257029
    Data Type: thesis
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File SizeFormat
    702901.pdf5263KbAdobe PDF2660View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback