English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 79845/108902 (73%)
造訪人次 : 20611676      線上人數 : 399
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 資訊科學系 > 期刊論文 >  Item 140.119/104951
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/104951

    題名: Discovering finance keywords via continuous-space language models
    作者: Tsai, Ming-Feng;Wang, Chuanju;Chien, Pochuan
    貢獻者: 資科系
    日期: 2016-10
    上傳時間: 2016-12-15 16:17:09 (UTC+8)
    摘要: The growing amount of public financial data makes it increasingly important to learn how to discover valuable information for financial decision making. This article proposes an approach to discovering financial keywords from a large number of financial reports. In particular, we apply the continuous bag-of-words (CBOW) model, a well-known continuous-space language model, to the textual information in 10-K financial reports to discover new finance keywords. In order to capture word meanings to better locate financial terms, we also present a novel technique to incorporate syntactic information into the CBOW model. Experimental results on four prediction tasks using the discovered keywords demonstrate that our approach is effective for discovering predictability keywords for post-event volatility, stock volatility, abnormal trading volume, and excess return predictions. We also analyze the discovered keywords that attest to the ability of the proposed method to capture both syntactic and contextual information between words. This shows the success of this method when applied to the field of finance. © 2016, Association for Computing Machinery.
    關聯: ACM Transactions on Management Information Systems, Volume 7, Issue 3, October 2016, 文章編號 7
    資料類型: article
    DOI: https://doi.org/10.1145/2948072
    顯示於類別:[資訊科學系] 期刊論文


    檔案 描述 大小格式瀏覽次數
    a7-tsai.pdf366KbAdobe PDF204檢視/開啟


    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋