English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88866/118573 (75%)
Visitors : 23559748      Online Users : 89
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/109181


    Title: 物件式分類法於高解析度航照影像萃取崩塌地之研究
    Other Titles: Object-based Classification for Detecting Landslides Using High Resolution Aerial Images
    Authors: 孔繁恩;詹進發;邵怡誠;李茂園;葉堃生;陳連晃
    Kung, Fan-En;Jan, Jihn-Fa;Shao, Yi-Chen;Li, Mao-Yuan;Yeh, Kuen-Sheng;Chen, Lien-Huang
    Contributors: 地政系
    Keywords: 崩塌地;像元式影像分類;物件式影像分類;影像分割;椒鹽效應
    landslide;pixel-based image classification;object-based image classification;image segmentation;salt-and-pepper effect
    Date: 2014-09
    Issue Date: 2017-04-24 15:06:48 (UTC+8)
    Abstract: 傳統的影像分類技術是以像元式(Pixel-Based)的方法為主,但若使用高空間解析度的影像時會產生椒鹽效應(Salt and Pepper Effect)的現象,進而影響分類的精度。基於此,本研究利用物件式(Object-Based)的影像分類方法於Z/I DMC(Digital Mapping Camera)航照影像上萃取出崩塌地區域。首先,本研究比較了Mean-shift和Ward二種不同演算法之影像分割技術,並採取分割結果較佳的Mean-shift演算法將航照影像依同質性分割成不同區塊,接著以每個區塊為最小單元進行分類,最後評估萃取出來之崩塌地的精度。研究結果顯示物件式的影像分類方法可以有效消除在像元式影像分類上所產生的椒鹽效應現象,其崩塌地萃取整體精度從87.05%(像元式分類)提升至99.41%(物件式分類)。
    Traditional image classification techniques use per-pixel (pixel-based) approaches to classify images. However, due to "salt-and-pepper effect", these approaches often result in less satisfactory outcome when applied to high resolution aerial image data. Therefore, the objective of this study was to use object-based classification method to detect landslide areas using aerial images acquired by Z/I DMC (Digital Mapping Camera). Firstly, this study compared two kinds of image segmentation techniques (Mean-shift and Ward approaches), and the algorithm with better segmentation result was adopted to segment image into regions based on homogeneity. Then each region was taken as a unit for image classification, and the accuracy of landslide detection was evaluated. The results show that, compared with pixel-based image classification approach, object-based image classification approach can effectively reduce "salt-and-pepper effect" and improve the accuracy of landslide extraction from high resolution aerial images. In this study, the overall accuracy for landslide extraction using pixel-based and object-based classification method was 87.05% and 99.41, respectively.
    Relation: 航測及遙測學刊, 18(4), 267-281
    Data Type: article
    DOI 連結: http://dx.doi.org/10.6574/JPRS.2014.18(4).5
    DOI: 10.6574/JPRS.2014.18(4).5
    Appears in Collections:[地政學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    267-281.pdf3174KbAdobe PDF200View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback