English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91913/122132 (75%)
Visitors : 25762598      Online Users : 359
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/110778
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/110778


    Title: 潛在移轉分析法與中位數法在長期追蹤資料分組的差異比較
    On classification of longitudinal data ─ comparison between Latent Transition Analysis and the method using Median as a cutpoint
    Authors: 李坤瑋
    Lee, Kun Wei
    Contributors: 江振東
    Chiang, Jeng Tung
    李坤瑋
    Lee, Kun Wei
    Keywords: 長期類別型追蹤資料
    潛在移轉分析法
    中位數分類法
    廣義估計方程式
    羅吉斯迴歸分析法
    Longitudinal categorical data
    Latent transition analysis
    Median
    Generalized estimating equation
    Logistic regression
    Date: 2017
    Issue Date: 2017-07-11 11:24:58 (UTC+8)
    Abstract: 當資料屬於類別型的長期追蹤資料(Longitudinal categorical data)時,除了可以透過廣義估計方程式(General estimate equation, GEE)來求解模型參數估計值外,潛在移轉分析(Latent transition analysis, LTA)法也是一種可行的資料分析方法。若資料的期數不多,也可以選擇將資料適度分群後使用羅吉斯迴歸分析(Logistic regression)法。當探討的反應變數為二元(Binary)型態,且觀察對象於每一期提供多個測量變數值的情況之下,廣義估計方程式與羅吉斯迴歸分析法的使用,文獻上常見先將所有的測量變數值加總後,以「中位數」作為分類的切割點。不同於以上兩種方法,潛在移轉分析法則是直接使用原始資料來取得觀察對象的潛在狀態相關訊息,因此與前二者的作法不同,可能導致後續的各項分析結果有所差異存在。
    為了能夠了解造成中位數分類法與移轉分析法差異的可能因素,我們架構在潛在移轉分析法的模型下,以不同的參數設定來進行電腦模擬,比較各參數條件下的兩分類方法差異。結果發現各潛在狀態下的測量變數反應機率形式、第一期潛在狀態的組成比例等皆會對兩分類方法是否具有相同分類有所影響。另外,透過分析「青少年媒體使用與健康生活調查」的實際資料得知,潛在移轉分析會將大部分的觀察對象歸屬於「網路成癮」,而中位數分類法則是將大部分的觀察對象歸屬於「無網路成癮」。此外,可以注意到「沮喪」、「線上情色每星期平均使用天數」、及「父母相處狀況」這幾個控制變數與各分組結果的關聯性,於上述三種資料分析方法中有所不同。
    Several methods can be used to analyze longitudinal categorical data, as among them Latent Transition Analysis (LTA), and Generalized Linear Models estimated by Generalized Estimating Equations (GEE) probably the most popular. In addition, if the number of periods is two, then with certain grouping of data, the Logistic Regression can also be applied to perform the analyses.
    When there are more than one manifest response variable for each study subject, LTA is able to classify the subjects in terms of the original manifest response variables and proceeds with necessary analyses. On the other hand, GEE method and Logistic Regression lack the flexibility, and require certain transformation to transform the manifest response variables into a categorical response variable first. One common way to form a binary response is to sum all manifest variables, and then taking median as a cut-point.
    In this study, we explore the differences of the classification resulted from LTA directly and using median as a cut-point through simulations. An empirical study is also provided to illustrate the classification differences, and the differences on the subsequent analyses using LTA, GEE method, and Logistic Regression approach.
    Reference: 1.Chang, F.C., Chiu, C.H., Lee, C.M., Chen, P.H., and Miao, N.F. (2014). Predictors of the initiation and persistence of Internet addiction among adolescents in Taiwan. Addictive Behaviors, 39, 1434–1440
    2.Chung, H., Park, Y.S., and Lanza, S.T. (2005). Latent transition analysis with covariates: pubertal timing and substance use behaviours in adolescent females. Statistics in Medicine, 24, 2895-2910
    3.Collins, L.M., and Wugalter, S.E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27, 131-157.
    4.Diggle, P.J., Heagerty , P., Liang, K.Y., and Zeger, S.L. (2002). Analysis of longitudinal data (Second Edition). Oxford University Press.
    5.Kleinbaum, D.G., and Klein, M. (2010). Logistic regression: a self-learning text (Third Edition). Springer Dordrecht Heidelberg London New York.
    6.Lanza, S.T., Dziak, J.J., Huang, L., Wagner, A.T., and Collins, L.M. (2015). Proc LCA & Proc LTA users' guide (Version 1.3.2). University Park: The Methodology Center, Penn State. Available from methodology.psu.edu.
    7.Lazarsfeld, P.F., and Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.
    8.Liang, K.Y., and Zeger, S.L. (1986). Longitudinal Data Analysis Using Generalized Linear Models. Biometrika, 73, 13-22
    9.SAS Institute Inc. (2016). SAS/STAT® 14.2 User’s Guide. Cary, NC: SAS Institute Inc.
    Description: 碩士
    國立政治大學
    統計學系
    104354003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104354003
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    400301.pdf7426KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback