English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93861/124308 (76%)
Visitors : 28942608      Online Users : 454
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/111277

    Title: Physical mechanism for biopolymers to aggregate and maintain in non-equilibrium states
    Authors: Ma, Wen-Jong;Hu, Chin-Kun
    Contributors: 應用物理所
    Keywords: Biological physics;Molecular modelling
    Date: 2017
    Issue Date: 2017-07-20 16:55:43 (UTC+8)
    Abstract: Many human or animal diseases are related to aggregation of proteins. A viable biological organism should maintain in non-equilibrium states. How protein aggregate and why biological organisms can maintain in non-equilibrium states are not well understood. As a first step to understand such complex systems problems, we consider simple model systems containing polymer chains and solvent particles. The strength of the spring to connect two neighboring monomers in a polymer chain is controlled by a parameter s with s → ∞ for rigid-bond. The strengths of bending and torsion angle dependent interactions are controlled by a parameter sA with sA → -∞ corresponding to no bending and torsion angle dependent interactions. We find that for very small sA, polymer chains tend to aggregate spontaneously and the trend is independent of the strength of spring. For strong springs, the speed distribution of monomers in the parallel (along the direction of the spring to connect two neighboring monomers) and perpendicular directions have different effective temperatures and such systems are in non-equilibrium states. © 2017 The Author(s).
    Relation: Scientific Reports 7, Article number: 3105
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1038/s41598-017-03136-7
    DOI: 10.1038/s41598-017-03136-7
    Appears in Collections:[應用物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    s41598-017-03136-7.pdf4680KbAdobe PDF241View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback