政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/111697
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 20 |  全文笔数/总笔数 : 90026/119936 (75%)
造访人次 : 24022630      在线人数 : 92
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 會議論文 >  Item 140.119/111697


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/111697


    题名: Network-traffic anomaly detection with incremental majority learning
    作者: 郁方
    Huang, Shin-Ying
    Yu, Fang
    Tsaih, Rua-Huan
    Huang, Yennun
    蔡瑞煌
    贡献者: 資管系
    关键词: Computer crime;Data mining;Mercury (metal);Neural networks;Statistical tests;Adaptive modeling;Changing environment;Data abstraction;Essential features;Incremental learning;Intrusion Detection Systems;Outlier Detection;Training and testing;Intrusion detection
    日期: 2015
    上传时间: 2017-08-09 17:28:34 (UTC+8)
    摘要: Detecting anomaly behavior in large network traffic data has presented a great challenge in designing effective intrusion detection systems. We propose an adaptive model to learn majority patterns under a dynamic changing environment. We first propose unsupervised learning on data abstraction to extract essential features of samples. We then adopt incremental majority learning with iterative evolutions on fitting envelopes to characterize the majority of samples within moving windows. A network traffic sample is considered an anomaly if its abstract feature falls on the outside of the fitting envelope. We justify the effectiveness of the presented approach against 150000+ traffic samples from the NSL-KDD dataset in training and testing, demonstrating positive promise in detecting network attacks by identifying samples that have abnormal features. © 2015 IEEE.
    關聯: Proceedings of the International Joint Conference on Neural Networks, 2015-September
    数据类型: conference
    DOI 連結: http://dx.doi.org/10.1109/IJCNN.2015.7280573
    DOI: 10.1109/IJCNN.2015.7280573
    显示于类别:[資訊管理學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML230检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈