English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89327/119107 (75%)
Visitors : 23849678      Online Users : 230
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/111951


    Title: Estimation of Green Water Footprint of Rice Paddies in taitung area using MODIS data
    Authors: 林士淵
    Wu, Chih-Da
    Huang, Tzu-Yu
    Lin, Shih-Yuan
    Lin, Chun-Te
    Contributors: 地政系
    Keywords: Agricultural products;Agriculture;Evapotranspiration;Radiometers;Remote sensing;Water resources;Fresh water resources;Green water;MOD16;Normalized difference vegetation index;Rice;Stepwise regression;Stepwise regression analysis;Terrestrial evapotranspiration;Regression analysis
    Date: 2015-10
    Issue Date: 2017-08-14 15:54:42 (UTC+8)
    Abstract: Green Water Footprint (GWF) is a recently developed indicator to identify the utilization and availability of the fresh water resource provided for agricultural products. Based on it accounting for rainwater evapotranspiration, a MODIS Global Terrestrial Evapotranspiration Data Set (MOD16) is applied to estimate GWF for its capable presenting global evapotranspiration status with high accuracy, wide coverage and long-term monitoring. Although the MOD16 product offers aforementioned advantages, current drawback is mainly on its data available time is too slow, for which announced data is about one-year late. This paper therefore aims to overcome the drawbacks and develop a regression method considering multiple variables including weather parameters and Normalized Difference Vegetation Index (NDVI) values in order to improve that the current MOD16 cannot reflect a more near real-time GWF. To demonstrate feasibility of the method we proposed, three representative agricultural areas in Taitung County mainly used for rice planting were selected as the studied sites. The analyzing data covered a prolonged period (from 2003 to 2012) and our regression model further distinguished the first and second cropping seasons in the ten years. The results of stepwise regression analysis reported that temperature and NDVI were significant variables related to MOD16. R2 values of models derived from the 1st and 2nd cropping data were 0.65 and 0.64, respectively. The regression models were also verified by 10 years' out-of-samples, and the results indicated that overall accuracy of the prediction was above 85%. Since the modelled evapotranspiration value was reliable, it was then used to compute the rice green water footprint of the two cropping seasons. Based on the model, even without values of the latest MOD16, the GWF of rice producing over the same area in 2013 and 2014 were estimated. The potential of a near real-time estimation of GWF of rice was demonstrated.
    Relation: ACRS 2015 - 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Proceedings, (), -
    36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, ACRS 2015; Crowne Plaza Manila GalleriaQuezon City, Metro Manila; Philippines; 24 October 2015 到 28 October 2015; 代碼 118634
    Data Type: conference
    Appears in Collections:[地政學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    WE1-6-4.pdf407KbAdobe PDF203View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback