政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/112297
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  全文笔数/总笔数 : 88613/118155 (75%)
造访人次 : 23480595      在线人数 : 670
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 資訊科學系 > 會議論文 >  Item 140.119/112297


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/112297


    题名: Exploring Communication Behaviors of Users to Target Potential Users in Mobile Social Networks
    作者: 徐國偉
    Chen, Chien-Cheng
    Hsu, Kuo-Wei
    Peng, Wen-Chih
    贡献者: 資訊科學系
    关键词: Communication behaviors;feature engineering;mobile social network
    日期: 2017-09
    上传时间: 2017-08-29 13:24:40 (UTC+8)
    摘要: In mobile communication services, users can communicate with each other over different telecommunication carriers. For telecom operators, how to acquire and retain users is a significant and practical task. Note that telecom operators only have their own customer profiles. For the users from other telecom operators, their information is sparse. Thus, given a set of communication logs, the main theme of our work is to identify the potential users who will possibly join the target services in the near future. Since only a limited amount of information is available, one challenging issue is how to extract features from the communication logs. In this article, we propose a Communication-Based Feature Generation (CBFG) framework that extracts features and builds models to infer the potential users. Explicitly, we construct a heterogeneous information network from the communication logs of users. Then, we extract the explicit features, which refer to those calling features of users, from the potential users’ interaction behaviors in the heterogeneous information network. Moreover, from the calling behaviors of users, one could extract the possible community structures of users. Based on the community structures, we further extract the implicit features of users. In light of both explicit and implicit features, we propose an information-gain-based method to select the effective features. According to the features selected, we utilize three popular classifiers (i.e., AdaBoost, Random Forest, and SVM) to build models to target the potential users. In addition, we have designed a sampling approach to extract training data for classifiers. To evaluate our methods, we have conducted experiments on a real dataset. The results of our experiments show that the features extracted by our proposed method can be effective for targeting the potential users.
    關聯: ACM Transactions on Intelligent Systems and Technology (TIST) , Volume 8 Issue 6, Article No. 79
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1145/3022472
    DOI: 10.1145/3022472
    显示于类别:[資訊科學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    a79-chen.pdf1621KbAdobe PDF213检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈