English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80610/109881 (73%)
造訪人次 : 20796828      線上人數 : 211
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/112495


    題名: Enhancement of Digital Reading Performance by Using a Novel Web-Based Collaborative Reading Annotation System with Two Quality Annotation Extraction Mechanisms
    作者: 陳志銘
    Lin, Yu Chieh
    Chen, Chih Ming
    Huang, Po Han
    貢獻者: 圖檔所
    關鍵詞: Computer aided instruction;Extraction;Human computer interaction;Information science;Websites;Cooperative/collaborative learning;Extraction mechanisms;Human computer interfaces;Information overloading;Interactive learning environment;Reading comprehension;Reading performance;Teaching/learning strategy;Learning systems
    日期: 2016-01
    上傳時間: 2017-09-01 10:07:50 (UTC+8)
    摘要: A web-based collaborative reading annotation system (WCRAS) allows learners to collaborate efficiently in annotating digital texts for adding valued information, share ideas by expressing different perspectives on digital texts with annotations, and create knowledge by reading digital texts with annotations. However, an excessively large number of annotations, poor-quality annotations, or redundant annotations generated in a digital text may lead to information overloading, diverge readers' focused attention on important annotations, and raise readers' cognitive load, ultimately reducing the effectiveness of reading annotations in promoting reading comprehension. Based on the reading behaviors of learners engaged in a digital text with annotations, this work develops a web-based collaborative reading annotation system with two quality annotation extraction mechanisms (WCRAS-TQAEM) that include the high-grade and master annotation extraction approaches to filter out poor or redundant annotations from a digital text with annotations in order to facilitate the reading performance of learners and reduce their cognitive load in digital reading environments. Analytical results indicate that performing digital reading with the support of high-grade annotation extraction mechanism performs significantly better in terms of reading comprehension performance gain than performing digital reading without quality annotation extraction mechanism support. Moreover, the high-grade annotation extraction mechanism can enhance the reading comprehension of learners in four question types (i.e. Recall, main idea, inference, and application). In contrast, the master annotation extraction mechanism can only improve the reading comprehension of learners in three question types (i.e. Recall, main idea, and inference), viewing all annotations can only improve the reading comprehension of learners in two question types (i.e. Recall and inference). Finally, the learners applying WCRAS without or with the support of different quality annotation extraction mechanisms for digital reading apparently do not significantly differ in cognitive load.
    關聯: Proceedings - 2015 IIAI 4th International Congress on Advanced Applied Informatics, IIAI-AAI 2015, 391-396
    資料類型: conference
    DOI: http://dx.doi.org/10.1109/IIAI-AAI.2015.226
    顯示於類別:[圖書資訊與檔案學研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML131檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋