English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 75046/106105 (71%)
造訪人次 : 19442902      線上人數 : 343
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/112749


    題名: 既有建物作為空載光達系統點雲精度評估程序之研究
    The Study of Accuracy Assessment Procedure on Point Clouds from Airborne LiDAR Systems Using Existing Buildings
    作者: 詹立丞
    Chan, Li Cheng
    貢獻者: 邱式鴻
    詹立丞
    Chan, Li Cheng
    關鍵詞: 空載光達
    點雲精度評估
    最小二乘平面擬合
    粗差偵測
    最小一乘法
    選擇權迭代法
    Airborne LiDAR
    Point clouds accuracy assessment
    Least Squares Plane Fitting
    Gross error detection
    Least Absolute Deviation
    Iteration with the selected weights
    日期: 2017
    上傳時間: 2017-09-13 15:15:48 (UTC+8)
    摘要: 空載光達系統於建置國土測繪基本資料扮演關鍵角色,依國土測繪法,為確保測繪成果品質,應依測量計畫目的及作業精度需求辦理儀器校正。國土測繪中心已於102年度建置航遙測感應器系統校正作業中,提出矩形建物之平屋頂面做為空載光達系統校正之可行性,而其所稱之校正,是以點雲精度評估待校件空載光達系統所得最終成果品質,並不對儀器做任何參數改正,但其校正成果可能因不同人員操作而有差異,因此本研究嘗試建立一套空載光達點雲半自動化精度評估程序,此外探討以山形屋脊線執行點雲精度評估之可行性。
    由於光達點雲為離散的三維資訊,不論是以山形屋脊線或矩形建物之平屋頂面作為標物執行點雲精度評估,均須先萃取屋頂面上之點,為避免萃取成果受雜訊影響,本研究引入粗差偵測理論,發展最小一乘法結合李德仁以後驗變方估計原理導出的選擇權迭代法(李德仁法)將非屋頂點視為粗差排除。研究中分別對矩形建物之平屋頂面及山形屋脊線進行模擬及真實資料實驗,其中山形屋脊線作為點雲精度評估之可行性實驗中發現不適合用於評估點雲精度,因此後續實驗僅以萃取矩形建物之平屋頂面點雲過程探討粗差比率對半自動化點雲精度評估程序之影響。模擬實驗成果顯示最小一乘法有助於提升李德仁法偵測粗差數量5%至10%;真實資料實驗,以含有牆面點雲的狀況為例,則有助提升5%的偵測粗差數量。本研究由逐步測試結果提出能夠適用於真實狀況的半自動化之點雲精度評估程序,即使由不同人員操作,仍能獲得一致的成果,顯示本研究半自動化精度評估程序之可信度。
    The airborne LiDAR system plays a crucial role in building land surveying data. Based on the Land Surveying and Mapping Act, to ensure the quality of surveying, instrument calibration is required. The approach proposed by National Land Surveying and Mapping Center (NLSC) in 2013 was confirmed the feasibility for airborne LiDAR system calibration using rectangular horizontal roof plane. The calibration mean to assess the final quality of airborne LiDAR system based on the assessment of the accuracy of the point cloud, and do not adjust the instrument. But the results may vary according to different operators. This study attempts to establish a semi-automatic procedure for the accuracy assessment of point clouds from airborne LiDAR system. In addition, the gable roof ridge lines is discussed for its feasibility for the accuracy assessment of point cloud.
    No matter that calibration is performed using rectangular horizontal roof plane or gable roof ridge line, point clouds located on roof planes need to be extracted at first. Therefore, Least Absolute Deviation (LAD) combined with the Iteration using Selected Weights (Deren Li method) is developed to exclude the non-roof points which regarded as gross errors and eliminate their influences. The simulated test and actual data test found that gable roof ridge lines are not suitable for accuracy assessment. As for the simulated test using horizontal roof planes, LAD combined with Deren Li method prompts the rate of gross error detection about 5% to 10% than that only by Deren Li method. In actual test, data contains wall points, LAD combined with Deren Li method can prompt about 5%. Meanwhile, a semi-automatic procedure for real operations is proposed by the step-by-step test. Even different operators employ this semi-automatic procedure, consistent results will be obtained and the reliability can achieve.
    參考文獻: 一、 中文參考文獻
    尤瑞哲、王偉立,2009,「光達點雲平面特徵自動化匹配於航帶平差之應用」,『航測及遙測學刊』,14(3):185-199。
    方述誠,1993,「線性優化及擴展—理論與演算法」,『數學傳播』,17(1)。
    王淼、湯凱佩、曾義星,2005,「光達資料八分樹結構化於平面特徵萃取」,『航測及遙測學刊』,10(1):59-70。
    王正楷,2007,「由空載光達資料進行建物偵測與結構線萃取」,國立臺灣大學土木工程學系碩士學位論文:臺北。
    史天元、彭淼祥、吳水吉、吳麗娟,2005,「農委會空載光達台灣地區測試」,『航測及遙測學刊』,10(1):103-128。
    吳究,2012,『測量平差』,臺北,遠流出版社。
    李德仁,,1984,「利用選擇權迭代法進行粗差定位」,『武漢大學學報』,9(1):46-68。
    李德仁、袁修孝,2002,『誤差處理與可靠性理論』,武漢,武漢大學出版社。
    李姝儀,2005,「從地面雷射點雲萃取物面角特徵供多測站資料連結之研究」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
    李唐宇,2007,「結合多元資料重建三維房屋模型」,國立中央大學土木工程學系研究所碩士論文:桃園。
    李宏君,2008,「從空載光達點雲之反射強度萃取道路交通標線交點」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
    李亞蒨,2010,「應用掃描線演算法萃取光達資料中的平面特徵之研究」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
    李良輝,2014,『最小二乘法平差理論與實務』,臺北,旭營文化。
    何心瑜,2015,「空載光達作業流程及品質管理之研究」,國立交通大學土木工程學系碩士學位論文:新竹。
    邱式鴻,2008,「以資料蒐評法和影像分塊技術自動萃取空載光達資料中的建物共面屋頂點」,『臺灣土地研究』,11(1):105-131。
    林柏丞,2012,「張量分析應用於結合空載光達資料與地形圖重建建物模型的品質預估之研究」,國立成功大學測量及空間資訊學系博士學位論文:臺南。
    林怡君,2013,「利用最小一乘法在地籍坐標轉換資料偵測之研究」,國立政治大學地政學系碩士學位論文:臺北。
    洪曉竹,2013,「應用空載光達資料自動化萃取建物邊界線」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
    張裕民,1993,「以穩健推估法進行測量平差之研究」,『四海學報』,8:33-50。
    郭志奕,2005,「結合光達資料與大比例尺向量圖重建三維建物模型」,國立中央大學土木工程學系研究所碩士論文:桃園。
    湯凱佩、曾義星,2004,「以八分樹三維網格結構組織光達點雲資料並進行平面特徵萃取」。論文發表於〈第二十三屆測量學術及應用研討會〉,國立中興大學:台中,民國93年9月9日至10日。
    童俊雄,2005,「空載光達系統誤差分析與航帶平差方法之探討」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
    黃英婷、李佩珊、蔡季欣,2012,「航遙測感應器校正初探」,論文發表於〈台灣地理資訊學會年會暨學術研討會〉,逢甲大學:台中,民國101年6月27日至28日。
    趙言、黎慕韓、王鵬、周磊,2016,「一次範數最小和選權迭代聯合的抗差法」,大地測量與地球動力學,36(4):331-333。
    劉榮寬,2005,「空載光達率定與點雲匹配」,國立交通大學土木工程學系博士學位論文:新竹。
    陳良健、郭志奕,2006,「結合光達資料與大比例尺向量圖重建三維建物模型」,『航測及遙測學刊』,11(4):361-380。
    陳依萍,2006,「空載光達航帶平差方法分析比較」,國立成功大學測量及空間資訊學系碩士學位論文:臺南。
    羅英哲、曾義星,2009,「光達點雲資料面特徵重建」,『航測及遙測學刊』,14(3):171-184。
    內政部國土測繪中心,2013,102年度建立航遙測感應器系統校正作業案工作總報告書。
    內政部國土測繪中心,2015,104年度建立航遙測感應器系統校正作業案工作總報告書。
    內政部國土測繪中心,2016,105年度擴充航遙測感應器系統校正作業工作總報告書。

    二、 英文參考文獻
    Ackermann, F., 1999,“Airborne laser scanning—present status and future expectations”, ISPRS Journal of Photogrammetry and Remote sensing, 54(2): 64-67.
    Awrangjeb, M., Zhang, C., & Fraser, C. S., 2013, “Automatic extraction of building roofs using LIDAR data and multispectral imagery”. ISPRS journal of photogrammetry and remote sensing, 83: 1-18.
    Axelsson, P., 1999, “Processing of laser scanner data—algorithms and applications”. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2): 138-147.
    Baarda, W., 1967, “A Testing Procedure for Use in Geodetic Networks”, Delft, the Netherlands: Computing Centre of the Delft Geodetic Institute.
    Burman, H., 2000, “Adjustment of laser scanner data for correction of orientation errors”, International Archives of Photogrammetry and Remote Sensing, Amsterdam, Netherlands, July 16-23.
    Csanyi, N., & Toth, C. K., 2007,“Improvement of lidar data accuracy using lidar-specific ground targets”,Photogrammetric Engineering & Remote Sensing, 73(4), 385-396.
    Demir, N., & Baltsavias, E., 2012, “Automated modeling of 3D building roofs using image and LiDAR data”. ISPRS Congress, Melbourne, Australia, August 25-September 1.
    Dorninger, P., & Pfeifer, N. 2008., “A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds”. Sensors, 8(11), 7323-7343.
    Forlani, G., Nardinocchi, C., Scaioni, M., & Zingaretti, P., 2003, “Building reconstruction and visualization from lidar data”, International Archives Of Photogrammetry Remote Sensing And Spatial Information Sciences, Ancona, Italy, July 1-3.
    Geibel, R., & Stilla, U., 2000, “Segmentation of laser altimeter data for building reconstruction: different procedures and comparison”. International Archives of Photogrammetry and Remote Sensing, Amsterdam, Netherlands, July 16-23.
    Gorte, B., 2002, “Segmentation of TIN-structured surface models”. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, Ottawa, Canada, July 9-12.
    Habib, A., Bang, K. I., Kersting, A. P., & Lee, D. C., 2009, “Error budget of LiDAR systems and quality control of the derived data”. Photogrammetric Engineering & Remote Sensing, 75(9): 1093-1108.
    Hawkins, D. M., 1980, Identification of outliers. London: Chapman and Hall.
    Höhle, J., 2013, “Assessing the positional accuracy of airborne laser scanning in urban areas”. The Photogrammetric Record, 28(142):196-210.
    Khoshelham, K., 2005, “Region refinement and parametric reconstruction of building roofs by integration of image and height data”. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, Vienna, Austria, August 29-30.
    Lindenthal, S., Ussyshkin, V., Wang, J., & Pokorny, M., 2011, “Airborne LIDAR: A fully-automated self-calibration procedure”, ISPRS Calgary 2011 Workshop, Calgary, Canada, August 29-31.
    Maas, H. G., & Vosselman, G., 1999, “Two algorithms for extracting building models from raw laser altimetry data”. ISPRS Journal of photogrammetry and remote sensing, 54(2): 153-163.
    Medioni, G., Lee, M. S., & Tang, C. K., 2000, “A computational framework for segmentation and grouping”. Elsevier.
    Miraliakbari, A., Hahn, M., Arefi, H., & Engels, J., 2008, “Extraction of 3D straight lines using LiDAR data and aerial images”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, July 3-11.
    Morin, K. W., 2002, Calibration of airborne laser scanners, Master Thesis, Department of Geomatics Engineering, University of Calgary, Calgary, Canada.
    Rentsch, M., & Krzystek, P., 2012, “Lidar strip adjustment with automatically reconstructed roof shapes”, The Photogrammetric Record, 27(139): 272-292.
    Roberto, C., James H., Craig R., Mark L., and Aaron B., 2013. “Assessing Lidar Accuracy with Hexagonal Retro-Reflective Targets”, Photogrammetric Engineering & Remote Sensing, 79(7):663–670.
    Roggero, M., 2002, “Object segmentation with region growing and principal component analysis”. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, Graz, Austria, September 9-13.
    Rottensteiner, F., 2003, “Automatic generation of high-quality building models from lidar data”. IEEE Computer Graphics and Applications, 23(6), 42-50.
    Schenk, T., 2001, “Modeling and recovering systematic errors in airborne laser scanners”. OEEPE workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, March 1 - 3.
    Schuster, H. F., 2004, “Segmentation of lidar data using the tensor voting framework”. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, July 12-23.
    Toth, C., Paska, E., & Brzezinska, D., 2008, “Quality assessment of lidar data by using pavement markings”. ASPRS Annual Conference, Portland, Oregon, USA, April 28 - May 2.
    Vain, A., 2010, “Calibration of Airborne Laser Scanning Intensity Data”. LŽUU MOKSLO DARBAI, 86(39):91-96.
    Vosselman, G., & Dijkman, S., 2001, “3D building model reconstruction from point clouds and ground plans”. International archives of photogrammetry remote sensing and spatial information sciences, Annapolis, Maryland, USA, October 22-24.
    Wehr, A., & Lohr, U.,1999, “Airborne laser scanning—an introduction and overview”. ISPRS Journal of photogrammetry and remote sensing, 54(2): 68-82.
    Wolf, P.; DeWitt, B., 2000, Elements of Photogrammetry with Applications in GIS, 3rd ed.,McGraw-Hill: New York, NY, USA,.
    Zhang, K., Yan, J., & Chen, S. C., 2006, “Automatic construction of building footprints from airborne LIDAR data”. IEEE Transactions on Geoscience and Remote Sensing, 44(9): 2523-2533.
    描述: 碩士
    國立政治大學
    地政學系
    104257030
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1042570301
    資料類型: thesis
    顯示於類別:[地政學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    030101.pdf12776KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋