English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140887 (78%)
Visitors : 46337188      Online Users : 1249
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/113060
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/113060


    Title: The sustainable improvement of manufacturing for nano-titanium
    Authors: Wang, Chia Nan
    Lin, Han Sung
    Hsueh, Ming Hsien
    Wang, Yen Hui
    Vu, Thi Hao
    Lin, Tsung Fu
    Contributors: 資管系
    Date: 2016
    Issue Date: 2017-09-15 16:10:29 (UTC+8)
    Abstract: Scientists have found that nanomaterials possess many outstanding features in their tiny grain structure compared to other common materials. Titanium at the nano-grain scale shows many novel characteristics which demonstrate suitability for use in surgical implants. In general, equal channel angular pressing (ECAP) is the most popular and simple process to produce nano-titanium. However, ECAP is time-consuming, power-wasting, and insufficiently produces the ultrafine grain structure. Therefore, the objective of this research is to propose a new method to improve the ECAP`s performances to reach the ultrafine grain structure, and also to save production costs, based on the innovation theory of Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ). Research results show that the process time is reduced by 80%, and 94% of the energy is saved. Moreover, the grain size of the diameter for nano-titanium can be reduced from 160 nanometers (nm) to 80 nm. The results are a 50% reduction of diameter and a 75% improvement of volume. At the same time, the method creates a refined grain size and good mechanical properties in the nano-titanium. The proposed method can be applied to produce any nanomaterial as well as biomaterials.
    Relation: Sustainability (Switzerland), 8(4), 402
    Data Type: article
    DOI 連結: http://dx.doi.org/10.3390/su8040402
    DOI: 10.3390/su8040402
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1-13.pdf6000KbAdobe PDF2210View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback