English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91280/121421 (75%)
Visitors : 25396028      Online Users : 90
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/114339


    Title: 探索選民的投票行爲變化:應用機率分配模型的預測方法
    Change in Voting Behaviour: Applying an Election Forecasting Model of Probability Distributions to Modify the Accuracy of Poll Outcomes
    Authors: 張順全
    莊文忠
    Chang, Shun-Chuan
    Keywords: 選舉預測;機率分配模型;民意調查;投票行爲;貝氏統計
    Public Polling;Voting Behavior;Election Forecasting;Mixture Distribution;Bayesian Statistics
    Date: 2008-11
    Issue Date: 2017-11-02 16:55:24 (UTC+8)
    Abstract: 過去許多有關選舉預測的研究發現,選舉民調中的贏家最後卻未能勝出,箇中隱藏不少值得深入探究的問題。本研究從方法論的觀點,嘗試利用過去選舉經驗資料,改進單純使用民意調查結果所做之選舉預測。就預測方法論而言,本文提出的選舉預測模型乃符合貝氏統計架構,此一架構所欲掌握的是選民投票行爲中所潛藏的異質性,據以探索選民的投票行爲昨日、今日、明日的變化。綜言之,本篇文章的研究所得價值有三:(1)成功應用貝塔-二項機率分配(beta-binomial distribution)模式改進單純使用民意調查結果,發展輔助民調預測模型,及提供作爲評估該次選舉是與過去開票結果不同的「變天型」抑或是「維持型」的預警指標;(2)同時利用此一機率分配模型處理未表態資料,預測選舉民調中未表態受訪者的投票意向;(3)將本研究所建立之模型應用在國內外不同選舉,檢證本模型的適用情境,無論是2004年美國總統大選、2006年台灣高雄市長選舉、抑或是2008年台灣總統選舉的候選人得票率預估,都獲得相當準確的效果。此外,本研究結果也同時指出若干有待思考的問題,說明未來值得繼續發展的方向。
    Due to undervotes, misvotes, or switchvotes bias, many polling data users felt frustrated in using the past polling outcome to forecast the new election. It is commonplace for voters to note an early frontrunner in polls will be doomed to fall in the real election outcome. A beta-binominal distribution is suggested to model the accuracy of early poll outcome which strategically influences the polling data users such as political parties, candidates, and mass media in implementing the election campaign. We demonstrate the advantages of probabilistic distribution and Bayesian reasoning, and how to estimate the parameters from past data, in modifying the accuracy of prior poll outcomes. In comparison with the traditional frequency approach, beta-binominal mixture distribution imposes a statistical-adjusting framework with ability to proportionate a coherent mechanism that synthesizes the performances of prior votes. The empirical data sets include the 2004 US presidential election in Atlas Web and TVBS polls in 2006 Kaohsiung mayor election and 2008 presidential election in Taiwan. This paper describes the general fitting of beta-binomial distribution on both datasets and discusses fruitful avenues for future research.
    Relation: 選舉研究 , 15(2) , 91-117
    Data Type: article
    DOI 連結: http://dx.doi.org/10.6612%2ftjes.2008.15.02.91-117
    DOI: 10.6612/tjes.2008.15.02.91-117
    Appears in Collections:[選舉研究 TSSCI] 期刊論文

    Files in This Item:

    File Description SizeFormat
    15(2)(091-117).pdf1821KbAdobe PDF92View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback