English  |  正體中文  |  简体中文  |  Items with full text/Total items : 87214/116105 (75%)
Visitors : 23268109      Online Users : 398
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 期刊論文 >  Item 140.119/115625
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/115625


    Title: Using Chinese radical parts for sentiment analysis and domain-dependent seed set extraction
    Authors: 楊亨利
    Chao, August F.Y.
    Yang, Heng-Li
    Contributors: 資科系
    Keywords: Sentiment analysis;Chinese radical;Restaurant review analysis;Domain-dependent seed
    Date: 2018-01
    Issue Date: 2018-01-24 17:31:00 (UTC+8)
    Abstract: Although there has been good progress in English sentiment analysis and resources, studies in English cannot be directly used in Chinese owing to the nature of Chinese language. Previous studies suggested adopting linguistic information, such as grammar and morpheme information, to assist in sentiment analysis for Chinese text. However, morpheme-based approaches have a problem in identifying seeds. In addition, these methods do not take advantage of radicals in the characters, which contain a great deal of semantic information. A Chinese word is composed of one or more characters, each of which has its radical part. We can interpret the partial meaning of a character by analyzing that of the radical in the character. Therefore, we not only consider the radical information as the semantic root of a character, but also consider the radical parts between characters in a word as an appropriate linguistic unit for conducting sentiment analysis. In this study, we conducted a series of experiments using radicals as the feature unit in sentiment analysis. Using segmented results from part-of-speech tools as a meaningful linguistic unit (word) in Chinese, we conducted analyses of single-feature word (unigram) and frequently seen two words (pointwise mutual information collocated bigrams) through various sentiment analysis measures. It is concluded that radical features could work better than word features and would consume less computing memory and time. An extended study of the extraction of seeds was also conducted, and the results indicated that 50 seed radical features performed well. A cross-corpus comparison was also conducted; the results demonstrated that the use of 50 extracted radical features as domain-dependent keywords worked better than other sentiment analysis strategies. This study confirmed that radical information could be adopted as a feature unit in sentiment analysis and that domain-dependent radicals could be reused in different corpora.
    Relation: Computer Speech & Language, Volume 47, Pages 194-213
    Data Type: article
    DOI 連結: https://doi.org/10.1016/j.csl.2017.07.007
    DOI: 10.1016/j.csl.2017.07.007
    Appears in Collections:[資訊科學系] 期刊論文

    Files in This Item:

    File SizeFormat
    194213.pdf6461KbAdobe PDF190View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback