English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 84345/112968 (75%)
造訪人次 : 22153193      線上人數 : 463
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/115967

    題名: Distinguishing Medical Web Pages from Pornographic Ones: An Efficient Pornography Websites Filtering Method.
    作者: 許志堅
    Sheu, Jyh-Jian
    貢獻者: 廣電系
    關鍵詞: Data Mining;Decision Tree;Medical Web Page;Pornographic Websites Filtering
    日期: 2017-09
    上傳時間: 2018-02-09 17:35:09 (UTC+8)
    摘要: In this paper, we apply the uncomplicated decision tree data mining algorithm to find association rules about pornographic and medical web pages. On the basis of these association rules, we propose a systematized method of filtering pornographic websites with the following major superiorities: 1) Check only contexts of web pages without scanning pictures to avoid the low operating efficiency in analyzing photographs. Moreover, the error rate is lowered and the accuracy of filtering is enhanced simultaneously. 2) While filtering the pornographic web pages accurately, the misjudgments of identifying medical web pages as pornographic ones will be reduced effectively. 3) A re-learning mechanism is designed to improve our filtering method incrementally. Therefore, the revision information learned from the misjudged web pages can incrementally give feedback to our method and improve its effectiveness. The experimental results showed that each efficacy assessment indexes reached a satisfactory value. Therefore, we can conclude that the proposed method is possessed of outstanding performance and effectivity.
    關聯: International Journal of Network Security, 19(5), 834-845.
    資料類型: article
    DOI 連結: http://dx.doi.org/10.6633%2fIJNS.201709.19(5).22
    DOI: 10.6633/IJNS.201709.19(5).22
    顯示於類別:[廣播電視學系] 期刊論文


    檔案 描述 大小格式瀏覽次數


    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋