English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92429/122733 (75%)
Visitors : 26293702      Online Users : 356
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/116779


    Title: 三角晶格易辛反鐵磁之量子相變
    Quantum phase transition in the triangular lattice Ising antiferromagnet
    Authors: 張鎮宇
    Chang, Chen Yu
    Contributors: 林瑜琤
    Lin, Yu Cheng
    張鎮宇
    Chang, Chen Yu
    Keywords: 挫折性反鐵磁
    零溫投射蒙地卡羅演算法
    隨機序列展開演算法
    絕熱量子模擬
    模擬退火
    動力學指數
    Frustrated antiferromagnet
    Zero-temperature projector algorithm
    Stochastic series expansion
    Adiabatic quantum simulation
    Simulated annealing
    Dynamical exponent
    Date: 2017
    Issue Date: 2018-04-09 15:51:34 (UTC+8)
    Abstract: 量子擾動及挫折性兩者均可破壞絕對零溫的磁序,為近代凝態物 理關注的有趣現象。在外加橫場下的三角晶格易辛反鐵磁兼具量子臨 界現象(quantum criticality)及幾何挫折性,可謂量子磁性物質之一典 範理論模型。本論文利用平衡態及非平衡態量子蒙地卡羅(quantum Monte Carlo)方法探測三角晶格易辛反鐵磁之量子相變,其界定零溫 時無磁性的順磁態及具 Z6 對稱破缺的有序態(所謂時鐘態)。這裡的 量子蒙地卡羅方法為運用算符的零溫投射(zero-temperature projector) 及隨機序列展開(stochastic series expansion)演算法。在非平衡模擬 中,我們分別沿降溫過程及量子絕熱過程逼近量子相變點,藉此我們 得到動力學指數,及其它相關臨界指數。
    The destruction of magnetic long-range order at absolute zero temperature arising from quantum fluctuations and frustration is an interesting theme in modern condensed-matter physics. The triangular lattice Ising antiferromag- net in a transverse field provides a playground for the study of the combined effects of quantum criticality and geometrical frustration. In this thesis we use quantum Monte Carlo methods both in equilibrium and non-equilibrium setups to study the properties of the quantum critical point in the triangular lattice antiferromagnet, which separates a disordered paramagnetic state and an ordered clock state exhibiting Z6 symmetry breaking; The methods are based on a zero-temperature projector algorithm and the stochastic series ex- pansion algorithm. For the non-equilibrium setups, we obtain the dynamical exponent and other critical exponents at the quantum critical point approached by slowly decreasing temperature and through quantum annealing.
    Reference: [1] G. H. Wannier, Phys. Rev. 79, 357 (1950).
    [2] J. Stephenson, Journal of Mathematical Physics 11, 413 (1970).
    [3] Y. Jiang and T. Emig, Phys. Rev. B 73, 104452 (2006).
    [4] R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. Lett. 84, 4457 (2000).
    [5] R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401 (2001).
    [6] R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. B 64, 144416 (2001).
    [7] S. V. Isakov and R. Moessner, Phys. Rev. B 68, 104409 (2003).
    [8] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M. Soukoulis, Phys. Rev. B 29, 5250 (1984).
    [9] H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
    [10] M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
    [11] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).
    [12] D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).
    [13] J. Cardy, Scaling and renormalization in statistical physics, volume 5, Cambridge
    university press, 1996.
    [14] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev.
    B 63, 214503 (2001).
    [15] M. Žukovič, L. Mižišin, and A. Bobák, Acta Physica Polonica A 126, 40 (2014).
    [16] S. Liang, Phys. Rev. B 42, 6555 (1990).
    [17] A. W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005).
    [18] A. W. Sandvik and K. S. D. Beach, arXiv:0704.1469, (2007).
    [19] R. G. Melko, Stochastic Series Expansion Quantum Monte Carlo, pages 185–206, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
    [20] A. W. Sandvik, Phys. Rev. E 68, 056701 (2003).
    [21] S. Inglis and R. G. Melko, New Journal of Physics 15, 073048 (2013).
    [22] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
    [23] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).
    [24] K. Binder, Phys. Rev. Lett. 47, 693 (1981).
    [25] A. W. Sandvik, AIP Conf. Proc. 1297, 135 (2010).
    [26] E. Farhi et al., Science 292, 472 (2001).
    [27] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys. Rev. B 87, 174302 (2013).
    [28] C.-W.Liu,A.Polkovnikov,andA.W.Sandvik,Phys.Rev.Lett.114,147203(2015).
    [29] M. W. Johnson et al., Nature 473, 194 (2011).
    [30] M. Born and V. Fock, Zeitschrift fur Physik 51, 165 (1928).
    [31] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
    [32] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, Science 295, 2427 (2002).
    [33] G. E. Santoro and E. Tosatti, Journal of Physics A: Mathematical and General 39, R393 (2006).
    [34] S. Boixo et al., Nature Physics 10, 218 (2014).
    [35] C. De Grandi and A. Polkovnikov, Adiabatic Perturbation Theory: From Landau– Zener Problem to Quenching Through a Quantum Critical Point, pages 75–114, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
    [36] 黃湘喻, 以模擬量子退火過程探索自旋系統的基態, Master’s thesis, 國立政治 大學, 2014.
    [37] B. Damski and W. H. Zurek, Phys. Rev. A 73, 063405 (2006).
    [38] T. W. Kibble, Journal of Physics A: Mathematical and General 9, 1387 (1976).
    [39] T. W. Kibble, Physics Reports 67, 183 (1980).
    [40] W. Zurek, Nature 317, 505 (1985).
    [41] W. H. Zurek, Physics Reports 276, 177 (1996).
    [42] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
    [43] A. Polkovnikov, Phys. Rev. B 72, 161201 (2005).
    [44] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).
    [45] A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).
    [46] A. W. Sandvik, Journal of Physics A: Mathematical and General 25, 3667 (1992).
    [47] D. C. Handscomb, Mathematical Proceedings of the Cambridge Philosophical So- ciety 58, 594–598 (1962).
    [48] D. C. Handscomb, Mathematical Proceedings of the Cambridge Philosophical So- ciety 60, 115–122 (1964).
    [49] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).
    [50] M. Hasenbusch and S. Meyer, Physics Letters B 241, 238 (1990).
    Description: 碩士
    國立政治大學
    應用物理研究所
    102755004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0102755004
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    500401.pdf849KbAdobe PDF334View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback