English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93779/124226 (75%)
Visitors : 28860629      Online Users : 406
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/116894

    Title: Significant role of the DNA backbone in mediating the transition origin of electronic excitations of B-DNA - implication from long range corrected TDDFT and quantified NTO analysis
    Authors: 郭光宇
    Jian-Hao, L
    Chai, Jeng-Da
    Guo, Guang-Yu
    Hayashi, Michitoshi
    Contributors: 應物所
    Date: 2012-07
    Issue Date: 2018-04-18 14:34:24 (UTC+8)
    Abstract: We systematically investigate the possible complex transition origin of electronic excitations of giant molecular systems by using the recently proposed QNTO analysis [J.-H. Li, J.-D. Chai, G. Y. Guo and M. Hayashi, Chem. Phys. Lett., 2011, 514, 362.] combined with long-range corrected TDDFT calculations. Thymine (Thy) related excitations of a B-DNA biomolecule are then studied as examples, where the model systems have been constructed by extracting from the perfect or an X-ray crystal (PDB code 3BSE) B-DNA structure with at least one Thy included. In the first part, we consider the systems composed of a core molecular segment (e.g. Thy, or di-Thy) and a surrounding physical/chemical environment of interest (e.g. backbone, adjacent stacking nucleobases) in gas phase and examine how the excitation properties of the core vary in response to the environment. We find that the orbitals contributed by the DNA backbone and surrounding nucleobases often participate in a transition of Thy-related excitations affecting their composition, absorption energy, and oscillator strength. A vast number of strongly backbone-orbital involved excitations are also found at an absorption wavelength below ∼180 nm predicted by TD-ωB97X. In the second part, we take into account geometrically induced variation of the excitation properties of various B-DNA segments, e.g. di-Thy, dTpdT etc., obtained from different sources (ideal and 3BSE). It is found that the transition origin of several Thy-related excitations of these segments is sensitive to slight conformational variations, suggesting that DNA with thermal motions may from time to time exhibit very different photo-induced physical and/or chemical processes.
    Relation: Physical Chemistry Chemical Physics, 14(25):9092-103
    Data Type: article
    DOI 連結: https://doi.org/10.1039/c2cp23676a
    DOI: 10.1039/c2cp23676a
    Appears in Collections:[應用物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback