English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80998/110426 (73%)
造訪人次 : 20953383      線上人數 : 411
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/117415


    題名: 漢語分類詞與量詞的分與合:探究其內在之認知機制與神經關連性
    作者: 何萬順
    貢獻者: 語言學研究所
    關鍵詞: 分類詞;量詞;乘法;認知機制;fMRI
    classifier;measure word;multiplication;cognitive mechanism;fMRI
    日期: 2014
    上傳時間: 2018-05-30 15:32:10 (UTC+8)
    摘要: 漢語是典型的分類詞語言,在數詞(Num)與名詞(N)之間需用分類詞(C),例如「五本書」,或量詞(M),例如「五箱書」。許多語言學家,尤其是形式句法學家,認為C/M 應統合為同一範疇;然而也有許多學者堅稱兩者應分屬不同的類別。這個存在超過了半世紀的爭議在Her (2012a)的數學解釋中找到了一個突破:C/M 的分與合乃歸因於其數學功能上的分與合。(1) C/M 在數學上的分與合 (Her 2012a)[Num X N] = [[Num × X] N], where X = C iff X =1, otherwise X = M.將 [Num C/M]的關係解釋為乘法的關係可將C/M 統合為「被乘數」;其區分在於其質(value)的不同:C=1, M≠1。Her (2012b) 進一步在一個形式語言學的架構下分析,C/M 之「合」在於句法:二者為同一句法類別,二者之「分」在於語意:C 為修飾語並非述詞,因此語意有穿透性,M 為述詞,因此語意無穿透性。以上的看法解釋了為何在[Num C/M N]中C的訊息包含於N,因此C 是可省略的,但是在[Num C/M N] 中M 的訊息並不包含於N,因此M 是不可省略的。但是對於數量詞與分類詞是否與數詞的處理有相同的神經基礎,從既有的實驗研究中並無法得到定論。在一個最新的fMRI 實驗中,Cui et al (2013)發現分類詞的處理與工具名詞相似,與點陣和數目不同。然而,這項研究中所謂的classifiers 其實包含了大量的量詞,不僅未區分C 與M,也未區分出數值的M和非數值的M。此外,他們也沒有排除掉分類詞的語義屬性影響,這樣的混淆極可能導致實驗結果的失真。我們從數學的角度對於 C/M 的解讀所得到的預測是:具有數值的C 與M1-2 應與數詞的處理類似,而非一般名詞,例如工具名詞。因此本研究的目的有二:一、複製Cui et al (2013)的實驗派典,首先進行行為實驗,但在語料上區分數值的C&M1-2 與非數值的M3-4,並將材料以最小對立體呈現,以控制語義屬性。二、測試上述Her (2012a, 2012b)有關C/M 的數學理論。針對目的二,我們原先設計計畫採用促發作業來探究C/M 分與合的認知機制與其神經關連性,以點與文字二種表示數量的方式,首先檢視C/M 是否的確含有數量的概念,再進一步檢視C 與M 的被乘數角色。然而,多次促發作業實驗都無顯著效果,因此我們改變實驗派典,改採numerical Stroop作業,受試者須判斷語意數量或字型大小,透過檢驗C/M是否表現出典型數量處理時會出現的距離效果和一致效果來驗證Her (2012a, 2012b)的理論。實驗結果顯著,支持Her (2012a, 2012b)的理論:1.C/M 的確含有數量的概念、2.C與M扮演被乘數的角色。
    The element in between a numeral (Num) and a noun (N) in Chinese, a textbook example of classifier languages, is recognized to be either a numeral classifier (C) or measure word (M). Many linguists, largely formalists, consider C/M converge as a single category, while others, many of them functionalists, claim that C and M diverge and form distinct categories. The stalemate lasted for more than half a century until a breakthrough in Her (2012a), which takes serious the mathematical interpretation of C/M and comes up with the most precise formulation for the C/M distinction.(1) C/M Distinction in Mathematical Terms (Her 2012a:1679)[Num X N] = [[Num × X] N], where X = C iff X =1, otherwise X = M.This multiplication interpretation of [Num C/M] has C/M converge as the multiplicand and diverge in their respective value: C=1, M≠1. Her (2012b) further demonstrates within a formal linguistic framework that the C/M convergence is syntactically encoded as the two belong to the same syntactic category, but their divergence is semantic in nature: C is transparent in being a modifier and not a predicate, but M is opaque and thus a predicate. This view satisfactorily explains why C is redundant and can thus be omitted in the NP but M is not.However, existing empirical studies produce conflicting results. Cui et al (2013) found that the processing of classifiers is similar to that of tool nouns, but not that of numbers and dot arrays. However, the so-called classifiers in the study included lots of Ms. The C/M distinction was not made, nor was the distinction between numerical Ms and non-numerical Ms. Furthermore, they did not control the potential confound of semantic attributes of C/Ms. Such confusions can certainly distort the results of the experiments.The mathematical interpretation of C/M suggests that the numerical C and M1-2 should be similar to numbers in processing than to common nouns. The goal of this project is: 1) to determine whether C/M share the same neural basis with numbers in processing, by replicating the fMRI study in Cui et al (2013) but with better experimental control and selection of stimuli; 2) to further test the mathematical interpretation of C/M in Her (2012a, 2012b). Originally, we planned to use a priming task to investigate the cognitive mechanism underlying C/Ms. However, we could not observe significant priming effect after trying several priming experiments. Consequently, we changed priming task into numerical stroop task, in which participants had to choose the C/M phrase that denotes a larger quantity or has a larger font size. By examining whether C/Ms reflect distance effect and congruity effect as classic number processing, we would like to verify Her's (2012a, 2012b) theory. The distance effect is a phenomenon that comparing proximate digits is more difficult than comparing remote ones. The congruity effect emerges when congruent pairs lead to facilitation effect whereas incongruent pairs result in interference effect. Our results showed significant distance and congruity effect, supporting Her's (2012a, 2012b) theory.
    關聯: 執行起迄:2014/08/01~2018/02/28
    103-2410-H-004-136-MY3
    資料類型: report
    顯示於類別:[語言學研究所] 國科會研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    103-2410-H-004-136-MY3.pdf2043KbAdobe PDF16檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋