English  |  正體中文  |  简体中文  |  Items with full text/Total items : 87924/117065 (75%)
Visitors : 23345877      Online Users : 50
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/117442
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/117442


    Title: 應用羅吉斯迴歸分析在個性化旅遊景點推薦模型之研究
    A Study on the Personalized Recommendation Model of Tourist Attractions Using Logistic Regression Analysis
    Authors: 王品方
    Contributors: 鄭宇庭
    郭訓志

    王品方
    Keywords: 羅吉斯迴歸分析
    個性化推薦
    旅遊產業
    Logistic regression analysis
    Personalized recommendation
    Tourism industry
    Date: 2018
    Issue Date: 2018-06-01 17:34:21 (UTC+8)
    Abstract: 我們正生活在一個大數據的時代,甚至也有人說得資料者得天下。在這個互聯網快速發展,讓大數據的各種應用受到了業界的高度關注與技術的快速升級,使得傳統的觀光產業隨著時代紛紛轉型,希望透過消費者的消費行為、個人資訊、成交紀錄等海量訊息透過數據分析找到市場需求與提供精準行銷,最後提高了顧客服務滿意度,並帶來龐大商機。而這一切的源頭都是為了更懂消費者的心,有別於傳統旅遊資料庫僅限於對客戶人群做簡單的統計分析,現在反而更側重於遊客的心理研究與旅遊後的產品體驗,一切以遊客的需求為關注點,並且通過對累積的大數據進行洽當地管理、建模與分享,從分析結果中觀察到的現象並給予經驗談無法給出的決策與建議,這也是本次研究旅遊推薦模型最主要的出發點。
    本研究設計問卷並調查研究年輕族群對於旅行的偏好,進行了解目標客群的心理研究後,應用羅吉斯迴歸分析,將蒐集到的數據建模,找到每一種旅行方式較容易吸引到哪一些族群,並且對該族群做出該旅遊景點的推薦。最後,未來的計畫是,希望延伸本旅遊景點推薦模型的概念,給予抵達目的地的交通方式與費用的精準計算,並利用輿情分析找到年輕族群熱搜的景點,提供一整趟旅行路線的規劃,作為旅遊業者開發新型旅行產品之參考來源。
    This is an era of big data; some people even regard that the person who owns the data controls the world. With the rapid development of the Internet, the applications of big data attract attention from various industries and the skills of data analysis are upgrading rapidly. Therefore, traditional tourism industry needs to be transformed to avoid being eliminated. Business attempts to discover the market demand and provide precision marketing by analyzing massive data from consumer behavior, personal information and transaction records. The final object is to improve customer service satisfaction, and bring in more business opportunities. The purpose is to understand the customers more furtherer and detailed. Instead of using simple statistical analysis of consumer information like traditional tourism database, it focuses more on the psychological states of tourists and the travel experience currently. The final objective is to meet tourists’ demand; therefore, the accumulated data of customers are managed, modeled and shared appropriately in this research.
    An online survey with questionnaire is designed to investigate travel preference of young group. After understanding the psychological research of target customers, the Logistic regression analysis is used to analyze the collected data and build a model. The model is able to discover the target group of each travelling style, and further provide itinerary recommendation. The future plan is to enhance the application of this concept of attraction recommendation model by combining the precise calculation of transportation and cost. Simultaneously, public opinion analysis is used to analyze the popular attractions which young adults are preferred. The ultimate objective is to provide a complete route plan for a trip as a reference for travel agency to develop new travel product.
    Reference: 參考文獻
    一、 中文文獻
    1. Ethel Lee,2018,個人化(Personalization)行銷怎麼做?掌握這9個電商技巧!TransBiz跨境電子商務智庫,
    https://transbiz.com.tw/ecommerce_personalization/。
    2. Kevin Tsai,2016,五張圖表看懂台灣旅遊產業,旅遊研究所,https://travel20.blogspot.tw/2016/05/blog-post_27.html。
    3. Kevin Tsai,2017,台灣的旅行社如何啟動第二次轉型,旅遊研究所,https://travel20.blogspot.tw/2017/01/blog-post_15.html。
    4. Vpriss,含有定性信息的多元迴歸模型—虛擬變量,MBA智庫文檔, http://doc.mbalib.com/view/ffaaa75496a5117c21aaa99893b38bcd.html。
    5. 中華民國交通部觀光局,2018,中華民國近十年觀光統計圖表,中華民國交通部觀光局行政資訊系統。
    6. 充電線,2016,騰訊Q2掙了快400億,但微信還要在社交1.0時代停多久?,鈦媒體,http://www.tmtpost.com/2442223.html。
    7. 吳元熙,2017,新的時代台灣旅遊新創抓對了這些趨勢,數位時代雜誌,https://www.bnext.com.tw/article/43472/what-did-taiwanese-travel-startups-do-that-they-can-raise-lots-of-funds。
    8. 李哲,2016,關於年輕人現如今的旅遊方式,我們有56 個發現,比如“被動旅遊”,好奇心日報,https://www.douban.com/note/583228516/。
    9. 肖政,2016,基於空間數據挖掘的個性化旅遊景點推薦系統研究,華中師範大學計算機應用技術專業碩士論文。
    10. 胡喬楠,2015,基於旅遊文記的旅遊景點推薦及行程路線規劃系統,浙江大學計算機應用技術專業碩士論文。
    11. 國立政治大學男女比106學年統計,University TW,
    https://university-tw.ldkrsi.men/FemaleRatio/0001#gsc.tab=0。
    12. 悠識數位,2013,讓你免費聽音樂,如何佔據消費者的心?淘寶用戶體驗專家分享經營秘訣,數位時代雜誌,
    https://www.bnext.com.tw/article/30120/BN-ARTICLE-30120。
    13. 淵浩,2016,讓你免費聽音樂,Spotify 打敗 Apple Music 的 4 大秘訣!,創新拿鐵,
    http://news.startuplatte.com/2016/11/15/4_secret_why_spotify_beat_apple_music/。
    14. 許峰、李帥帥、齊雪芹,2016,大數據背景下旅遊系統模型的重構,旅遊科學,第30卷,第1期。
    15. 陳君毅,2017,五張圖表看懂台灣旅遊產業:旅遊網站發展、消費者需求、如何創新一次搞懂,科技報橘,
    https://buzzorange.com/techorange/2017/08/22/about-taiwan-travel/。
    16. 馮國雙、陳景武、周春蓮,2004,logistic迴歸應用中容易忽視的幾個問題,中華流行病學雜誌,第25卷,第6期。
    17. 詹勳全、張嘉琪、洪雨柔,2012,利用羅吉斯迴歸建立阿里山森林鐵路山崩潛感預測模式,中國農學通報,第30卷,第34期,p.294-302。
    18. 廖麗娜,2010,第七章羅吉斯迴歸,中國醫藥大學生物統計中心,http://biostatdept.cmu.edu.tw/doc/epaper_a/paper/teaching_corner_050-1.pdf。
    19. 謝邦昌、鄭宇庭、蘇志雄,2017,Data Mining概述:以Clementine 12.0為例,p.393-396。
    20. 羅紅、陳曉、何忠偉,2014,低碳視角下鄉村旅遊決策行為實證研究—基於北京市300位遊客的調查資料,中國農學通報,第30卷,第34期,p.294-302。


    二、 英文文獻
    1. Ahn, J. H., S. P. Han & Y. S. Lee, 2006, “Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry”, Telecommunications Policy, Volume 30, Issues 10–11, pp552-568.
    2. Boakye, K., A. Khattak, J. Liu & S. Nambisan, 2017, “How Do Smartphone and Non-Smartphone Users Access and Use Travel Information? Evidence from the 2014 Puget Sound Regional Household Travel Survey”, Transportation Research Board 96th Annual Meeting.
    3. Chandrashekar, A., F. Amat, J. Basilico & T. Jebara, 2017, “Artwork Personalization at Netflix”, Netflix Technology Blog.
    4. Circella, G., R. Berliner, Y. Lee, F. Alemi, K. Tiedeman, L. Fulton & P. L. Mokhtarian, 2017, “The Multimodal Behavior of Millennials: Exploring Differences in Travel Choices between Young Adults and Gen Xers in California”, Transportation Research Board 96th Annual Meeting.
    5. Crompton, J. L., 1979, “Motivations for pleasure vacation”, Annals of Tourism Research, Volume ,6, Issue 4, pp 408-24.
    https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76.
    6. Kitasako, Y., Y. Sasaki, T. Takagaki, A. Sadr & J. Tagami, 2017, “Multifactorial logistic regression analysis of factors associated with the incidence of erosive tooth wear among adults at different ages in Tokyo”, Clinical Oral Investigations, Volume 21, Issue 8, pp 2637–2644.
    7. Memon, I., L. Chen, A. Majid, M. Q. Lv, I. Hussain & G. Chen, 2015, “Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist”, Wireless Personal Communications, Volume 80, Issue 4, pp 1347–1362.
    8. Ranteallo, I. C. , 2016, “Food Representation and Media: Experiencing Culinary Tourism Through Foodgasm and Foodporn”, Balancing Development and Sustainability in Tourism Destinations, pp 117-127.
    9. Wen,Y. T., J. Y. Yeo, W. C. Peng & S. W. Hwang, 2017, “Efficient Keyword-Aware Representative Travel Route Recommendation”, IEEE Transactions on Knowledge & Data Engineering, vol. 29, Issue No. 08 - Aug, p.1639–1652.
    Description: 碩士
    國立政治大學
    統計學系
    105354025
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105354025
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    402501.pdf1425KbAdobe PDF62View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback