English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91280/121421 (75%)
Visitors : 25421184      Online Users : 278
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/118191
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/118191

    Title: Dimension Reduction of High-Dimensional Datasets Based on Stepwise SVM
    Authors: 周珮婷
    Chou, Elizabeth P.
    Ko, Tzu-Wei
    Contributors: 統計系
    Date: 2017-11
    Issue Date: 2018-07-03 15:05:09 (UTC+8)
    Abstract: The current study proposes a dimension reduction method, stepwise support vector machine (SVM), to reduce the dimensions of large p small n datasets. The proposed method is compared with other dimension reduction methods, namely, the Pearson product difference correlation coefficient (PCCs), recursive feature elimination based on random forest (RF-RFE), and principal component analysis (PCA), by using five gene expression datasets. Additionally, the prediction performance of the variables selected by our method is evaluated. The study found that stepwise SVM can effectively select the important variables and achieve good prediction performance. Moreover, the predictions of stepwise SVM for reduced datasets was better than those for the unreduced datasets. The performance of stepwise SVM was more stable than that of PCA and RF-RFE, but the performance difference with respect to PCCs was minimal. It is necessary to reduce the dimensions of large p small n datasets. We believe that stepwise SVM can effectively eliminate noise in data and improve the prediction accuracy in any large p small n dataset.
    Relation: arXiv:1711.03346v1
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback