政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118220
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 88295/117812 (75%)
Visitors : 23405153      Online Users : 68
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/118220

    Title: 潛在類別分析於文字探勘之應用
    Applying Latent Class Analysis on Text Mining
    Authors: 廖彥婷
    Liaw, Yen-Ting
    Contributors: 江振東
    Liaw, Yen-Ting
    Keywords: 分類
    Latent class analysis
    Similarity detection
    Text mining
    Date: 2018
    Issue Date: 2018-07-03 17:23:43 (UTC+8)
    Abstract: 現今網路的使用已經成為主流,因此在網站上擁有大量的文字信息。文字探勘也因此成為一種流行的資料分析方法。潛在類別分析(Latent Class Analysis)是一常用於社會科學的分析方法來尋找潛藏於資料背後的潛在類別。在本文中,我們應用潛在類別分析來評估此分析方法應用於文字探勘的可行性。本文中針對兩個案例進行論證和研究,一個是比較“水滸傳”和“三國演義”的相似性檢測,另一個則是針對新聞文章的分類問題來尋找關鍵詞並據此提供結論和建議。
    There is a large amount of information on the website that is in text form, and due to the increment of internet usage, text mining has become a popular method for information retrieval. In this paper, we apply Latent Class Analysis (LCA), a technique that is often used in social sciences to reveal underlying latent classes, on text mining and check whether it is an appropriate method on this regard. Two study cases are demonstrated, one is similarity detection that compare two novels, Water Margin and Romance of Three Kingdom, and the other is using classification that classify the categories for news articles to find important keywords. Conclusions and suggestions are provided.
    Reference: Aggarwal, C. C. & Zhai, C. X. (2012). Mining Text Data. New York, NY: Springer Publishing Company.
    Forster, M. R. (2000). Key Concepts in Model Selection: Performance and Generalizability. Journal of Mathematical Psychology, 44, 205- 231.
    Lin, T. H. & Dayton, C. M. (1997). Model Selection Information Criteria for Non-Nested Latent Class Models. Journal of Educational and Behavioral Statistics, 22(3), 249-264.
    Linzer, D. A. & Lewis, J. B. (2011). poLCA: An R Package for Polytomous Variable Latent Class Analysis. Journal of Statistical Software, 42(10), 1-29.
    Matsuo, Y. & Ishizuka, M. (2004). Keyword Extraction from a Single Document Using Word Co-Occurrence Statistical Information. International Journal on Artificial Intelligence Tools, 13(1), 157-169.
    McCutcheon, A. L. (1987). Latent Class Analysis (No.64). Thousand Oaks, CA: Sage Publications.
    Mittermayer, M. (2004). Forecasting Intraday Stock Price Trends with Text Mining Techniques. Proceedings of the 37th Hawaii International Conference on System Sciences.
    Nylund, K. L., Asparouhov, T., & Muthen, B. O. (2007). Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. STRUCTURAL EQUATION MODELING,14:4, 535-569, doi: 10.1080/10705510701575396.
    Rosenberg, M. (1968). The Logic of Survey Analysis. New York: Basic Books.
    Suh, J. (2016). Comparing writing style feature-based classification methods for estimating user reputations in social media. SpringerPlus 5:261. doi: 10.1186/s40064-016-1841-1
    Yue, C.J., Ho, L., Pan, Y., and Cheng, W.(2016). A Quantitative Study of Chinese Writing Style based on the New Youth Magazin, Concepts & Context in East Asia, Vol. 5.
    Zheng, R., Li, J., Chen, H. & Huang, Z. (2006). A Framework for Authorship Identification of Online Messages: Writing-Style Features and Classification Techniques. Journal of the American Society for Information Science and Technology, 57(3), 378-393.
    Zou, F., Wang, F. L., Deng, X., Han, S. & Wang, L. S. (2006). Automatic Construction of Chinese Stop Word List. Proceedings of the 5th WSEAS International Conference on Applied Computer Science, pp.1010-1015.
    李永祜(2011)。 施耐庵和羅貫中對《水滸傳》成書的貢獻。荷澤學院學報, 33(4), 24-37。
    林宏仁. (2017, Dec. 13). 停用詞.txt. Retrieved from https://github.com/tomlinNTUB/Machine-Learning/tree/master/%E4%B8%AD%E6%96%87%E5%88%86%E8%A9%9E.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105354029
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.STAT.004.2018.B03
    Appears in Collections:[Department of Statistics] Theses

    Files in This Item:

    File SizeFormat
    402901.pdf1298KbAdobe PDF0View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback