English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 81712/111165 (74%)
造訪人次 : 21242641      線上人數 : 544
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/118606
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/118606


    題名: 社群媒體與恐慌指數關聯分析-以富邦VIX為例
    Extracting Information from Social Media to Track Volatility Index of Financial Markets Risk
    作者: 林瑋
    Lin, Wei
    貢獻者: 姜國輝
    Johannes K. Chiang
    林瑋
    Lin, Wei
    關鍵詞: 社群媒體
    金融市場風險
    富邦VIX
    文字探勘
    社會網絡分析
    VAR模型估計
    因果關係檢定
    Social media
    Financial market risk
    Fubon VIX
    Text mining
    Social network analysis
    VAR
    Granger causality test
    日期: 2018
    上傳時間: 2018-07-12 13:39:54 (UTC+8)
    摘要: 近年來全球各國經濟局勢動盪,各國政治變化也萬千,相對容易引發人們對於金融市場未來發展的恐慌及不安,國內外大大小小的事情都可能影響著金融體系的運作,另一方面,現在人幾乎時時刻刻都離不開的社群網站每天都有成千上萬篇貼文及討論,充斥著各式各樣的資訊,其中不乏就有與財經政治相關的議題,或多或少都可能會影響著實際社會的金融情勢。
    本研究將探討人們在社群媒體上對於金融相關議題的討論及關注,其所構成的社群金融是否將與實際金融市場的風險性有關聯,本研究透過蒐集台灣較大的幾個財經媒體官方Facebook粉絲專頁之文本,藉由文字探勘相關技術,及社會網絡分析方法,並以網絡分析軟體NodeXL視覺化呈現,再由恐慌指數富邦VIX作為衡量金融市場風險的指標,透過VAR模型估計、因果關係檢定、衝擊反應及預測誤差變異數拆解等時間序列方法,探討Facebook討論度及富邦VIX之間的關聯性。研究發現人們在社群媒體上對於金融相關議題的討論及關注,其所構成的社群金融對於實際金融市場風險之恐慌指數有些許關聯性。
    In recent years, the economic situation in every country in the world is volatile and the politics is also changing often in every country in the world. These will cause people feel panic of the future financial market uncertainty. Any big or small issues happened in the world may affect the operation of the financial system.
    On the other hand, because of the popularity of social media, there are thousands of millions of articles and discussions release on social networking sites daily which are full of all kinds of information. Some of them are related to financial and political issues, more or less may affect the financial market situation in the real world.
    This study explores that if there will be any relation between the financial market risk in the real world and the financial and political issues people discuss and concern on social media. Therefore, the study intends to collect the texts from Facebook fan pages of some of the famous financial media in Taiwan. And by means of text mining technologies, social network analysis methods and NodeXL, a network analysis software, can visualize the result of the social network analysis by social network graph. Through the Fubon VIX as a representation of the volatility index in financial market risk of Taiwan, time series models such as VAR model and Granger Causality Test were used to track the relationship between the financial and political issues people discuss and concern on social media and the volatility index of financial market risk. We discover there are some relationship between the financial and political issues people discuss and concern on social media and the volatility index in financial market risk in the real world.
    參考文獻: BleiM.D., NgY.A., & JordanI.M. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 頁 993-1022.
    BorgattiP.S., EverettG.M., & FreemanC.L. (2002). Ucinet for Windows: Software for Social Network Analysis. Harvard, MA: Analytic Technologies.
    CapocciA., ServedioV. D.P., CaldarelliG., & ColaioriF. (2005). Detecting communities in large networks. Physica A: Statistical Mechanics and its Applications, 352(2-4), 頁 669-676.
    CeruttiM.E., ClaessensS., & RoseK.A. (2017). How Important is the Global Financial Cycle? Evidence from Capital Flows. Washington, D.C.: International Monetary Fund.
    ColemanS.J. (1990). Foundations of Social Theory. Cambridge: Belknap Press of Harvard University Press.
    DegenneA., & ForseM. (1999). Introducing Social Networks. London: SAGE Publications.
    FreemanC.L. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 頁 215-239.
    GartonL., HaythornthwaiteC., & WellmanB. (1997). Studying Online Social Networks. Journal of Computer-Mediated Communication, 3(1), 頁 75-106.
    GeeK.L., JonesJ.J., & BurkeM. (2016). Social Networks and Labor Markets: How Strong Ties Relate to Job Finding On Facebook's Social Network. Journal of Labor Economics, 35(2), 頁 485-518.
    GriffithsT., & SteyversM. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(1), 頁 5228-5235.
    HannemanR., & RiddleM. (2005). Introduction to Social Network Methods. California: University of California, Riverside.
    KarabulutY. (2013). Can Facebook Predict Stock Market Activity? Frankfurt: Goethe University Frankfurt.
    KrackhardtD., & HansonR.J. (1993). Informal Networks: The Company Behind the Chart. Harvard business review, 71(4), 頁 104-111.
    LaumannO.E., GalaskiewiczJ., & MarsdenV.P. (1978). Community Structure as Interorganizational Linkages. Annual Review of Sociology, 4(1), 頁 455-484.
    MalikS., & XuT.T. (2017). Interconnectedness of Global Systemically-Important Banks and Insurers. Washington, D.C.: International Monetary Fund.
    MitchellJ.C. (1969). The concept and use of social networks. 於 MitchellJ.C., Social networks in urban situations: Analyses of personal relationships in central African towns (頁 1-50). England: Bobbs-Merrill reprint series in anthropology.
    MorenoL.J. (1934). Who Shall Survive? A new Approach to the Problem of Human Interrelations. Journal of the American Medical Association, 80(6), 頁 231-234.
    NewmanD., HagedornK., ChemuduguntaC., & SmythP. (2007). Subject metadata enrichment using statistical topic models. In Proceedings of the 7th ACM/IEEE-CS joint conference on Digital libraries, (頁 366-375).
    ScottJ. (2000). Social Network Analysis: A Hand Book. London: SAGE Publications.
    ScottJ. (2002). Social network analysis: critical concepts in sociology. New York: Taylor & Francis.
    TichyM.N., Tushman L.M., & FombrunC. (1979). Social Network Analysis for Organizations. Academy of Management Review, 4(4), 頁 507-519.
    WassermanS., & FaustK. (1994). Social Network Analysis: Methods and Applications. New York: Cambridge University Press.
    王昭銘. (2009). VIX 波動率指數與亞洲股市之動態關聯性研究. 南華大學財務管理研究所碩士論文. 南華大學.
    吳峻興、丁一賢. (2011). 運用社會網絡分析與網頁探勘技術以發掘部落格仇恨團體之研究 . 國立高雄大學資訊管理學系.
    吳齊殷、莊庭瑞. (2004年1月). 超連結網絡分析: 一項分析網路社會結構的新方法. 資訊社會研究(6), 頁 127-148.
    李樹甘、林志輝. (2005). 粵港經濟關係互為影響的實證分析. 香港樹仁學院經濟學系.
    林育龍. (2014). 對使用者評論之情感分析研究-以Google Play市集為例. 國立政治大學資訊管理研究所碩士論文.
    洪崇洋. (2012). LDA 和使用紀錄為基礎的線上電子書主題趨勢發掘方法. 國立中山大學資訊管理學系硏究所碩士論文.
    張日威. (2014). 應用LDA進行Plurk主題分類及使用者情緒分析. 國立雲林科技大學資訊管理系碩士論文.
    張笠雲、譚康榮. (1999). 網絡台灣:企業的人情關係與經濟理性. 台北: 遠流出版社.
    郭迺鋒、林祝吉、劉名寰、林崑峯. (2010). 情緒因子在貨幣政策傳遞過程中所扮演的角色-結構因子擴充向量自迴歸模型之應用. 台灣金融財務季刊, 11(4), 頁 67-103.
    郭迺鋒、林崑峯、鄧志松. (2011年7月). 國父行腳之空間分佈與社會網絡分析之應用. 地理資訊系統季刊, 5(3), 頁 19-23.
    郭迺鋒、詹智盛. (2012). UCINET and NodeXL 社會網路分析軟體教學. 台北, 世新大學.
    郭迺鋒、熊漢琳、林崑峯、方文秀. (2011). 社會網絡對全球人口遷徙之影響-分量迴歸分析. 臺灣人口學會年會暨學術研討會. 台北.
    陳怡茹. (2016). 以社會網路分析方法探測多元性別族群意識傳遞之研究. 國立政治大學資訊管理學系碩士論文.
    葉席吟、林品華、樊晉源、詹德譯. (2015). 知識產業發展願景研究:以醫療器材產業為例. 台北: 財團法人國家實驗研究院科技政策研究與資訊中心.
    熊瑞梅. (1995). 社會網絡的資料蒐集、測量及分析. 於 章英華、傅仰止、瞿海源, 社會調查與分析:社會科學研究方法檢討與前瞻之一 (頁 313-356). 台北: 中央研究院民族學研究所專刊.
    劉羿廷. (2015). 運用財經文本情感分析於台灣電子類股價指數趨勢預測之研究. 國立政治大學資訊管理學系碩士論文.
    談成訪、汪材印. (2014). 基於LDA模型的新聞話題分類研究. 電腦知識與技術:學術交流(6), 頁 3795-3797.
    描述: 碩士
    國立政治大學
    資訊管理學系
    105356013
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105356013
    資料類型: thesis
    DOI: 10.6814/THE.NCCU.MIS.002.2018.A05
    顯示於類別:[資訊管理學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    601301.pdf6268KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋