English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89327/119107 (75%)
Visitors : 23842470      Online Users : 88
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/119342


    Title: 電離層高階項誤差對GPS相對定位精度之影響
    The higher order ionospheric delays effect on the accuracy of GPS relative positioning
    Authors: 嚴翊豪
    Yan, Yi-Hao
    Contributors: 林老生
    Lin, Lao-Sheng
    嚴翊豪
    Yan, Yi-Hao
    Keywords: 太陽黑子
    全球定位系統
    相對定位
    二次差分
    電離層高階項誤差
    Sun spot
    Global positioning system (GPS)
    Relative positioning
    Double difference
    Higher-order Ionospheric Delay
    Date: 2018
    Issue Date: 2018-08-13 12:36:41 (UTC+8)
    Abstract: 電離層高階項誤差是全球定位系統(GPS)的主要誤差來源之一。電離層高階項誤差包括一階 (I_1)、二階(I_2)和三階項(I_3)等,其中二階和三階項被歸納為電離層高階項誤差(I_H)。透過雙頻無電離層線性組合消除電離層一階項誤差後,所剩餘之電離層誤差即為電離層高階項誤差。對於更高精度的GPS定位應用,例如國家坐標系維護和變形監測,應考慮第二、三階等高階項誤差之改正。
    本文研究電離層高階項誤差對GPS相對定位精度之影響,探討議題包含:(1)研究由GPS載波相位觀測值中的電離層高階項誤差所組成的二次差分電離層高階項誤差(∆∇I_H),並分別討論∆∇I_H與基線在不同緯度、不同長度、不同方向、不同季節和不同太陽活動之間的關係;(2)分別對改正I_H前與改正I_H後進行基線向量的解算,並研究電離層高階項誤差對基線向量的影響;(3)以相對定位解算出的坐標為基礎,探討改正I_H對點位精度提升之影響。使用2009年到2015年台灣地區5個衛星追蹤站以及亞洲地區6個衛星追蹤站的GPS資料做測試,然後以RINEX_HO軟體計算雙頻GPS觀測量中的電離層高階項誤差,最後利用Bernese 5.2軟體分別對改正I_H前與改正後I_H之GPS觀測檔案進行基線向量解算。
    根據實驗結果發現:(1) ∆∇I_H會隨著基線在不同緯度、不同長度、不同方向、不同季節和不同太陽活動而有不同的特性,∆∇I_H可以達到16.3mm;(2) I_H對於不同季節、不同太陽活動之基線向量仍有影響,且 ∇∆I_H具有正負數特性,經長時間觀測可以相互抵消,但在短時間觀測的情況下, ∇∆I_H消除的能力較不穩定,在2014年太陽活動較活躍的時期I_H對相對定位的影響可達6.94mm;(3)改正電離層高階項誤差後,各方向(△N、△E、△U)的精度提升比例大約介於20%~80%之間,且大多可以提升50%以上,此外△E提升比例最佳,其次是△N、△U。
    Ionospheric delays are one of the main error sources of the Global Positioning System (GPS). The ionospheric delays include first-order, second-order and third-order items. Those second-order and third-order items are denoted as higher-order ionospheric delays. Supposed that L1 and L2 bands GPS data are available, the first-order item can be eliminated through ionosphere-free linear combination. However, the higher-order ionospheric delays are left. For higher precision GPS applications, such as national coordinate frame maintenance and deformation monitoring, the higher-order ionospheric delays should be taken into account.
    In order to study the higher-order ionospheric delays on the GPS relative positioning, the main goals of this work include: (1) studying the relationship among the double differences of higher-order ionospheric delays of carrier phases of each baseline, and the baseline length, baseline orientation, geomagnetic latitude, season and solar activity level, etc., (2) studying the effects of the higher-order ionospheric delays on baseline vectors, both with and without considering the higher-oder ionospheric delay correction. (3) On the basis of the coordinates of the GPS relative positioning solution, studying the effects of the higher-order ionospheric delays on the accuracy of the point position.
    The GPS data from five satellite tracking stations in the region of Taiwan and six satellite tracking stations in the region of Asia covering the years 2009 to 2015 will be used as test data. The software RINEX_HO is used to compute and correct the higher-order ionospheric delays on the GPS L1/L2 data, and the software Bernese 5.2 is used to process the GPS relative positioning.
    According to the experiment results: (1) There are several characteristics among the double differences of higher-order ionospheric delays of each baseline, and the baseline length, baseline orientation, geomagnetic latitude, season and solar activity level. ∆∇I_H can reach 16.3mm. (2) The higher-order ionospheric delays still be influenced by season and solar activity. The higher-order ionospheric delays have positive and negative characteristics, as observation time increase, the higher-order ionospheric delays will be offset. In contrast, as observation time decrease, the ability of offset will be unstable. The effect of I_H can reach 6.94mm. (3) After correcting the higher-order ionospheric delays, the improvement ratio of each direction is about 20%~80%, and the best improvement ratio is east-west direction, which is better than that of north-south direction and up-down direction.
    Reference: 一、中文參考文獻
    朱春春、李征航、屈小川、申小平,2015,「高階電離層延遲對 GPS 二次差分觀測值和基線向量的影響」,『大地測量與地球動力學』,35(1):81-86。
    余濤, 萬衛星, 劉立波, 唐偉, 欒曉莉, & 楊光林. (2006). 利用 IGS 数据分析全球 TEC 的周年和半年变化特性. 地球物理学报, 49(4), 943-949。
    林老生,2009,「GPS精密單點定位在地籍測量之應用」,『台灣土地研究』,12(2):1-25。
    林老生、洪婉綺,2017,「電離層高階項誤差對GPS精密單點定位精度之影響」,『 台灣土地研究』,20(2):1-20。
    洪婉綺,2016,消除電離層高階項誤差以提昇GPS 精密單點定位精度之研究,國立政治大學地政學系碩士論文。
    高書屏,2012,『GPS衛星定位測量概論』,詹氏書局。
    彭德熙,2008,台灣區域性電離層模型之估計: 應用於單頻精密單點定位. 成功大學測量及空間資訊學系學位論文, 1-68.
    黃勁松、李征航,2005,『GPS測量與數據處理』,武漢:武漢大學出版社。
    蔡和芳,1995。全球定位系統觀測電離層全電子含量,國立中央大學,太空科學所碩士論文,85頁。
    二、外文參考文獻
    Balan, N., Otsuka, Y., Bailey, G. J., & Fukao, S. (1998). Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar. Journal of Geophysical Research: Space Physics, 103(A5), 9481-9495.
    Bassiri, S., and Hajj, G. A., 1993, “Higher-order ionospheric effects on the global positioning system observables and means of modeling them.”, Manuscripta geodaetica, 18: 280-289.
    Brunner, F. K., and Gu, M., 1991, “An improved model for the dual frequency ionospheric correction of GPS observations.” Manuscripta geodaetica, 16(3): 205-214.
    Chapman, S., 1931, “The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth.”, Proceedings of the Physical Society, 43(1): 26.
    Dach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS software version 5.2.
    Davies, K., 1990, Ionospheric radio, London: Peter Peregrinus Ltd.
    Deng, L., Jiang, W., Li, Z., Chen, H., Wang, K., & Ma, Y. (2017). Assessment of second-and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series. Journal of Geodesy, 91(2), 207-227.
    El-Rabbany, A., 2002, Introduction to GPS: the global positioning system, U.S.: Artech House.
    Elmas, Z. G., Aquino, M., Marques, H. A., and Monico, J. F., 2011, “Higher order ionospheric effects in GNSS positioning in the European region.”, Annales Geophysicae, 29(8): 1383-1399.
    Fritsche, M., Dietrich, R., Knöfel, C., Rülke, A., Vey, S., Rothacher, M., and Steigenberger, P., 2005, “Impact of higher‐order ionospheric terms on GPS estimates.”, Geophysical Research Letters, 32: L23311.
    Hadas, T., Krypiak‐Gregorczyk, A., Hernández‐Pajares, M., Kaplon, J., Paziewski, J., Wielgosz, P., ... & Sierny, J. (2017). Impact and implementation of higher‐order ionospheric effects on precise GNSS applications. Journal of Geophysical Research: Solid Earth.
    Hartmann, G., and Leitinger, R., 1984, “Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz.”. Bulletin géodésique, 58(2): 109-136.
    Hathaway, D. H., 2015a, “The solar cycle.”, Living Reviews in Solar Physics, 12(1): 1-87.
    Hernandez‐Pajares, M., Juan, J. M., Sanz, J., & Orús, R. (2007). Second‐order ionospheric term in GPS: Implementation and impact on geodetic estimates. Journal of Geophysical Research: Solid Earth, 112(B8)
    Hocke, K., 2008, “Oscillations of global mean TEC.”, Journal of Geophysical Research: Space Physics (1978–2012), 113: A04302.
    Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2008, GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more, Germany: Springer Science and Business Media.
    Hoque, M. M., and Jakowski, N., 2008, “Estimate of higher order ionospheric errors in GNSS positioning.”, Radio Science, 43(5): RS5008.
    Kedar, S., Hajj, G. A., Wilson, B. D., and Heflin, M. B., 2003, “The effect of the second order GPS ionospheric correction on receiver positions.”, Geophysical Research Letters, 30(16): SDE.
    Klobuchar, J., 1996, “Ionospheric effects on GPS.”, Global Positioning System: Theory and applications., 1: 485-515.
    Langley, R. B., 1998, “Propagation of the GPS Signals” pp. 111-149 in GPS for Geodesy, edited by Kleusberg, A., and Teunissen, P. J. G., eds., Germany: Springer.
    Liang, M. C., Li, K. F., Shia, R. L., and Yung, Y. L., 2008, “Short‐period solar cycle signals in the ionosphere observed by FORMOSAT‐3/COSMIC.”, Geophysical Research Letters, 35(15): L15818.
    Liu, L., Zhao, B., Wan, W., Ning, B., Zhang, M. L., and He, M., 2009, “Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements.”, Journal of Geophysical Research, 114: A02302.
    Marques, H., Monico, J., and Aquino, M., 2011, “RINEX_HO: second-and third-order ionospheric corrections for RINEX observation files.”, GPS solutions, 15(3): 305-314.
    McNamara, L. F., 1991, The ionosphere: communications, surveillance, and direction finding: Florida: Krieger publishing company.
    Mendillo, M., Huang, C.-L., Pi, X., Rishbeth, H., and Meier, R., 2005, “The global ionospheric asymmetry in total electron content.”, Journal of atmospheric and solar-terrestrial physics, 67(15): 1377-1387.
    Min, K., Park, J., Kim, H., Kim, V., Kil, H., Lee, J.,Rentz, S., Lühr, H., and Paxton, L., 2009, “The 27‐day modulation of the low‐latitude ionosphere during a solar maximum.”, Journal of Geophysical Research: Space Physics, 114: A04317.
    Odijk, D., 2002, Fast precise GPS positioning in the presence of ionospheric delays, Doctoral dissertation, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft.
    Petrie, E. J., Hernández-Pajares, M., Spalla, P., Moore, P., and King, M. A., 2011, “A review of higher order ionospheric refraction effects on dual frequency GPS.”, Surveys in Geophysics, 32(3): 197-253.
    Seeber, G. (2003). Satellite geodesy: foundations, methods, and applications. Walter de gruyter.
    Strangeways, H. J., & Ioannides, R. T. (2002). Rigorous calculation of ionospheric effects on GPS Earth-satellite paths using a precise path determination method. Acta Geod Geoph Hung, 37(2-3), 281-292.
    Yeh, K. C., & Liu, C. H. (1982). Radio wave scintillations in the ionosphere. Proceedings of the IEEE, 70(4), 324-360.
    三、網頁參考文獻
    Hathaway, D., 2015b, The Sunspot Cycle. Retrieved November 22, 2015, from Hathaway, D. on the World Wide Web: http://solarscience.msfc.nasa.gov/SunspotCycle.shtml
    Description: 碩士
    國立政治大學
    地政學系
    105257031
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105257031
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.LE.014.2018.A05
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File SizeFormat
    703101.pdf11255KbAdobe PDF182View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback