政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/119578
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140901 (78%)
Visitors : 46060953      Online Users : 1051
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/119578


    Title: 發炎的機制以及其在中樞代謝調控中的作用研究
    The Study of the Mechanisms of Inflammation and Its roles in Central Controls of Metabolism
    Authors: 章學榛
    Contributors: 陳紹寬
    章學榛
    Keywords: 干擾素誘導跨膜蛋白
    發炎
    POMC神經元
    促發炎細胞因子
    代謝調控
    IFITM
    Inflammation
    POMC neuron
    Proinflammatory cytokines
    Metabolic signaling
    Date: 2018
    Issue Date: 2018-08-27 14:47:47 (UTC+8)
    Abstract: 本研究包括兩個部分。第一部分是發現Ifitm基因剔除鼠中產生的自發性發炎反應表型。Ifitm基因是一組會受干擾素所誘導表現的基因,干擾素刺激後所轉譯出的蛋白質在抗病毒功能中有著重要作用。然而,這些蛋白質的生化性質和生物功能上還不清楚。在先前的研究中,剔除5個Ifitm基因的IfitmDel小鼠被用來探討Ifitm基因的生物功能,我們在IfitmDel小鼠中觀察到隨著年齡的增加會產生低度發炎,在周邊血中單核細胞活化標誌物如CD86和MHCII的水平升高。IfitmDel小鼠在文獻中被指出有肥胖和食慾過盛的表現,我們發現這些小鼠的下視丘中Nos2表現顯著增加,表示著下視丘有發炎的情況。為了測試是否是機能不全的骨髓細胞或是過多的發炎訊號引起IfitmDel小鼠低度發炎,我們取野生型小鼠及IfitmDel小鼠的骨髓,並將其誘導成巨噬細胞來,比較其對發炎刺激的反應。在脂多醣體(LPS)和干擾素-γ(Interferon-γ)的刺激下,IfitmDel小鼠骨髓誘導巨噬細胞被活化的程度顯著較高。我們的結果顯示IFITM蛋白在巨噬細胞中具有調節發炎反應的功能,Ifitm基因的缺失導致在刺激下有較強烈的發炎反應。本研究的第二部分是研究促發炎細胞因子如何改變POMC神經元的代謝信號。位於下視丘弓狀核的POMC神經元在飲食調控和能量平衡中扮演重要角色,透過接受周邊代謝信號,如瘦蛋白和胰島素,來調控食慾下降並增加能量消耗,最近的研究中表明發炎可能會干擾POMC神經元中的代謝調節路徑。在我們的研究中,檢測了促發炎因子的增加如何影響mHypoA-POMC / GFP細胞株的代謝信號傳導。此外,考慮到造成發炎的物質並不局限於單一種促發炎細胞因子,所以將以LPS處理過的誘導巨噬細胞培養液應用為條件培養液加入POMC神經元中,此條件培養液中含有促炎細胞因子混合物。我們首先檢測POMC神經元對混合促炎細胞因子的反應,調控POMC神經元厭食反應的基因,如:POMC和Socs3,在發炎信號的刺激下升高。之後檢測在有條件培養液的環境下,POMC神經元中瘦素或胰島素誘導的信號傳導途徑的活化是否會受影響,瘦素或胰島素信號傳導在促炎細胞因子存在下會被破壞。另外,POMC神經元中的關鍵代謝調節蛋白:單磷酸腺苷活化蛋白質激酶(AMPK)的活化會被促炎細胞因子抑制。綜合上述觀察結果,我們認為POMC神經元的代謝調控會在發炎的環境下遭到破壞。
    This study consists of two major parts. The first part is to characterize the inflammation developed in Ifitm genes knockout mutants. Ifitm genes are a group of interferon inducible genes that are transcriptional activated upon interferon stimulation and play important roles in interferon meditated antiviral functions. However, the biochemical properties and other biological functions of these proteins are not fully understood. Previously IfitmDel mutant mice that lack 5 Ifitm genes were generated to investigate the biological functions of Ifitm genes. We recently observed age dependent low-grade inflammation phenotype in IfitmDel mice. Mutants at 4-month of age started to exhibit elevated levels of monocyte activation markers such as CD86 and MHCII in peripheral blood. Obesity and hyperphagia have previously been reported in IfitmDel mutants. The expression of hypothalamic nos2 is upregulated in the mutants, indicating that hypothalamic inflammation is also developed. To test whether inflammation is caused by malfunctioned mutant myeloid cells or by excessive inflammatory signals, we further generate bone marrow derived macrophages from both IfitmDel mutants and wild type controls. Upon LPS and interferon-γ stimulation, mutant macrophages are drastically activated and the activation status is significantly higher than that of wild type macrophages. Our data suggest the anti-inflammatory roles of IFITM proteins. Ablating Ifitm genes augment the inflammatory response upon stimulation. The second part of this study is to investigate how proinflammatory cytokines altered the metabolic signaling in POMC neurons. POMC neurons in arcuate nucleus play pivotal roles in feeding controls and energy homeostasis. This group of neurons respond to peripheral metabolic signals, such as leptin and insulin, and mediate the anorexigenic response and increase energy expenditure in the hypothalamus. Recently accumulating data suggest that inflammation might interrupt metabolic regulations by affecting this group of neurons. In this study, we examined how increase of proinflammatory molecules influence metabolic signaling in the cell line mHypoA-POMC/GFP, which is generated by immortalizing the primary hypothalamic POMC neurons cultures. Also, considering that the effect of inflammation might not be limited to single kind of proinflammatory cytokines, we applied conditioned medium of LPS-primed macrophages, which contained a mixture of proinflammatory cytokines, to the POMC neuron culture. We first examined the response of the POMC neurons to the mixed proinflammatory cytokines. The genes mediating anorexigenic response of POMC neurons, such as POMC and Socs3, are elevated upon the stimulation of the inflammatory signals. Additionally, the activation of signaling pathways of the POMC neurons induced by leptin or insulin were examined with the conditioned medium. Both leptin or insulin signaling are disrupted at the presence of proinflammatory cytokines. Also, the activation of AMP-activated protein kinase (AMPK), a key metabolic regulator in POMC neurons, is also inhibited by proinflammatory cytokines. Combining all the observations, we conclude that metabolic signaling of POMC neurons are disrupted with inflammation.
    Reference: 參考文獻
    張立德、林翠品、陳金滄、張讚昌、陳至理、楊堉驎、周秀慧、吳正男、戴國峯、吳文勉、施科念、郭加恩 (2007) 免疫學 華格那出版社
    Abdelaal M, le Roux CW, Docherty NG (2017)Morbidity and mortality associated with obesity. Ann Transl Med. 5(7):161.
    Alber D, Staeheli P. (1996) Partial inhibition of vesicular stomatitis virus by the interferon-induced human 9-27 protein. J Interferon Cytokine Res 165:375-380.
    Ashley NT, Weil ZM, Nelson RJ. (2012) Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst 43:385–406.
    Atasoy D, Betley JN, Su HH, Sternson SM. (2012) Deconstruction of a neural circuit for hunger. Nature. 488:172–177.
    Bailey CC, Kondur HR, Huang IC, Farzan M. (2013) Interferon-induced Transmembrane Protein 3 Is a Type II Transmembrane Protein. J Biol Chem 288(45): 32184–32193.
    Bailey CC, Zhong G, Huang IC, Farzan M (2014) IFITM-Family Proteins: The Cell’s First Line of Antiviral Defense. Annu. Rev. Virol. 1:261–83
    Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H, Lai CF, Tartaglia LA. (1996) The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci U S A. 93(16):8374-8.
    Boltz-Nitulescu G, Wiltschke C, Holzinger C, Fellinger A, Scheiner O, Gessl A, Förster O. (1987) Differentiation of rat bone marrow cells into macrophages under the influence of mouse L929 cell supernatant. J Leukoc Biol. 41(1):83-91.
    Bouret SG, Draper SJ, Simerly RB. (2004) Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J Neurosci. 24(11):2797-805.
    Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ. (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 139(7):1243-1254.
    Braun TP, Marks DL. (2010) Pathophysiology and treatment of inflammatory anorexia in chronic disease. J Cachexia Sarcopenia Muscle. 1:135–45.
    Burke JD, Platanias LC, Fish EN. (2014) Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against coxsackievirus B3. J Virol. 88(6):3485-95.
    Challen GA, Boles N, Lin KK, Goodell MA. (2009) Mouse Hematopoietic Stem Cell Identification And Analysis. Cytometry A. 75(1): 14–24.
    Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ. (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest. 117(8):2325-36.
    Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ. (2006) Hypothalamic mTOR signaling regulates food intake. Science. 312(5775):927-30.
    Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB. (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin`s effect on food intake. Cell Metab. 16(1):104-12.
    De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA. (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 146(10):4192–9.
    Diamond MS, Farzan M. (2013) The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13:46–57
    Elmquist JK, Elias CF, Saper CB. (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron. 22:221-232.
    Evans SS, Lee DB, Han T, Tomasi TB, Evans RL. (1990) Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood 76, 2583–93.
    Fernández-Riejos P, Najib S, Santos-Alvarez J, Martín-Romero C, Pérez-Pérez A, González-Yanes C, Sánchez-Margalet V. (2010) Role of leptin in the activation of immune cells. Mediators Inflamm. 2010:568343.
    Ferrante AW Jr. (2007). Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J. Intern. Med. 262, 408–414.
    Friedman R, Hughes AL. (2002) Molecular evolution of theNF-κβsignaling system. Immunogenetics 53:964–74
    Friedman RL, Manly SP, McMahon M, Kerr IM, Stark GR. (1984) Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell. 38:745–755.
    Fritsch SD, Weichhart T. (2016) Effects of Interferons and Viruses on Metabolism. Front Immunol. 7:630. 10.3389
    Fujiwara N, Kobayashi K. (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4(3):281-6.
    Gao S, Kinzig KP, Aja S, Scott KA, Keung W, Kelly S, Strynadka K, Chohnan S, Smith WW, Tamashiro KL, Ladenheim EE, Ronnett GV, Tu Y, Birnbaum MJ, Lopaschuk GD, Moran TH. (2007) Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci U S A. 104(44):17358-63.
    Ghosh S, May MJ, Kopp EB. (1998) NF-κβand Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–60
    Han SM, Namkoong C, Jang PG, Park IS, Hong SW, Katakami H, Chun S, Kim SW, Park JY, Lee KU, Kim MS. (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia. 48(10):2170-8.
    Hanagata N, Li X, Morita H, Takemura T, Li J, Minowa T. (2011) Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab 29(3):279-90.
    Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R, Cowley MA, Cantley LC, Lowell BB, Elmquist JK. (2008) Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest. 118:1796–1805.
    Ho HH, Ivashkiv LB. (2006) Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem. 281(20):14111-8.
    Hotamisligil GS. (2006). Inflammation and metabolic disorders. Nature 444, 860–867.
    Howard JK, Lord GM, Matarese G, Vendetti S, Ghatei MA, Ritter MA, Lechler RI, Bloom SR. (1999) Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J Clin Invest. 104(8):1051-9.
    Huynh MK, Kinyua AW, Yang DJ, Kim KW. (2016) Hypothalamic AMPK as a regulator of energy homeostasis. Neural Plast. 2016:2754078.
    Hyam SR, Lee IA, Gu W, Kim KA, Jeong JJ, Jang SE, Han MJ, Kim DH. (2013) Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur J Pharmacol. 708(1-3):21-9
    Janeway CA, Travers P, Walport M, Shlomchik MJ. (2005) Immunobiology: The Immune System in Health and Disease. New York: Garland Sci.
    Jia R, Pan Q, Ding S, Rong L, Liu SL, Geng Y, Qiao W, Liang C. (2012)The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J Virol 86, 13697–707.
    Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim HS, Park JY, Kim YB, Lee KU. (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 9(7):901-6.
    Klein S.L. and Nelson R.J. (2010) Social Behavior and Parasites. In: Breed M.D. and Moore J., (eds.) Encyclopedia of Animal Behavior, volume 3, pp. 216-225
    Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TC, Rosenstiel P. (2001) Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol 28:1687–702
    Lange UC, Adams DJ, Lee C, Barton S, Schneider R, Bradley A, Surani MA. (2008) Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis gene family cluster. Mol Cell Biol 28(15):4688-96.
    Lange UC, Saitou M, Western PS, Barton SC, Surani MA. (2003) The Fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev Biol. 3: 1.
    Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, Mazur D, Carmeliet P, Bouret SG, Prevot V, Dehouck B. (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17(4):607-17.
    Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, Mazur D, Carmeliet P, Bouret SG, Prevot V, Dehouck B. (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17(4):607-17.
    Le Thuc O, Stobbe K, Cansell C, Nahon JL, Blondeau N, Rovère C. (2017) Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Front Endocrinol (Lausanne). 14;8:197.
    Leshan RL, Björnholm M, Münzberg H, Myers MG Jr. (2006) Leptin receptor signaling and action in the central nervous system. Obesity (Silver Spring). Suppl 5:208S-212S.
    Li JM, Ge CX, Xu MX, Wang W, Yu R, Fan CY, Kong LD. (2015)Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats. Molecular nutrition & food research. 59(2):189–202.
    Ling S., Zhang C., Wang W., Cai X., Yu L., Wu F., Chang L, Tian, C. (2016). Combined approaches of EPR and NMR illustrate only one transmembrane helix in the human IFITM3. Sci Rep, 6:24029.
    Lord GM, Matarese G, Howard JK, Bloom SR, Lechler RI. (2002) Leptin inhibits the anti-CD3-driven proliferation of peripheral blood T cells but enhances the production of proinflammatory cytokines. J Leukoc Biol. 72(2):330-8.
    Lu Y, Zuo Q, Zhang Y, Wang Y, Li T, Han J. (2017) The expression profile of IFITM family gene in rats. Intractable Rare Dis Res 6(4): 274–280.
    Marim FM, Silveira TN, Lima DS Jr, Zamboni DS. (2010) A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS One. 5(12):e15263.
    Martinez FO, Gordon S. (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 10.12703/P6-13
    Mayle A, Luo M, Jeong M, Goodell MA. (2013) Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A. Jan;83(1):27-37.
    Medzhitov R. (2008) Origin and physiological roles of inflammation. Nature 454(7203): 428–435
    Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB. (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 428(6982):569-74.
    Nathan C. (2002) Points of control in inflammation. Nature 420:846–52
    Nazarians-Armavil A, Chalmers JA, Lee CB, Ye W, Belsham DD. (2014) Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways. Journal of Endocrinology 220.1: 13-24.
    Nikolic T, Dingjan GM, Leenen PJ, Hendriks RW. (2002) A subfraction of B220(+) cells in murine bone marrow and spleen does not belong to the B cell lineage but has dendritic cell characteristics. Eur J Immunol. 32(3):686-92.
    Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr, Seeley RJ, Schwartz MW. (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes. 52(2):227-31.
    Nutr Metab Cardiovasc Dis. 18(2):158-68.
    Oh TS, Cho H, Cho JH, Yu SW, Kim EK. (2016) Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy. 12(11):2009-2025.
    Ouchi N., Parker JL., Lugus JJ., and Walsh K. (2011). Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97.
    Ouchi, N., Parker, J. L., Lugus, J. J., and Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97.
    Proell M, Riedel SJ, Fritz JH, Rojas AM, Schwarzenbacher R. (2008) The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One 3:e2199
    Quan W, Kim HK, Moon EY, Kim SS, Choi CS, Komatsu M, Jeong YT, Lee MK, Kim KW, Kim MS, Lee MS. (2012) Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology. 153(4):1817-26.
    Rauch I, Müller M, Decker T. (2013)The regulation of inflammation by interferons and their STATs. JAKSTAT. 2(1):e23820.
    Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. (2005) The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. USA 102:9577–82
    Sällman Almén M, Bringeland N, Fredriksson R, Schiöth HB. (2012) The dispanins: a novel gene family of ancient origin that contains 14 human members. PLoS One 7(2):e31961
    Samuel CE. (2001) Antiviral actions of interferons. Clin Microbiol Rev. 14(4):778-809
    Sanyal AJ (2005). Mechanisms of disease: pathogenesis of nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 46–53.
    Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. (2000) Central nervous system control of food intake. Nature 404:661-671.
    Serhan CN, Savill J. (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–97
    Shapira SD, Gat-Viks I, Shum BO, Dricot A, de Grace MM, Wu L, Gupta PB, Hao T, Silver SJ, Root DE, Hill DE, Regev A, Hacohen N. (2009) A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell, 139(7):1255-1267.
    Stolarczyk E. (2017) Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol. 37:35-40.
    Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 175(1):342-9
    Stout RD, Suttles J. (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 76(3):509-13.
    Takahashi S, Doss C, Levy S, Levy R. (1990)Tapa-1, the Target of an Antiproliferative Antibody, Is Associated on the Cell-Surface with the Leu-13 Antigen. Journal of Immunology 145, 2207–2213.
    Thomas C, Moraga I, Levin D, Krutzik P O, Podoplelova Y, Trejo A, Lee, C, Yarden G, Vleck S E, Glenn J S, Nolan G P, Piehler J, Schreiber G, and Garcia K C. (2011) Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 146, 621–632.
    Tilg H., and Moschen AR. (2008). Insulin resistance, inflammation, and non-alcoholic fatty liver disease. Trends Endocrinol. Metab. 19, 371–379.
    Trépanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 21(8): 1009–1026.
    Valassi E, Scacchi M, Cavagnini F. (2008) Neuroendocrine control of food intake.
    Varela L, Horvath TL. (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 13(12):1079-86.
    Velloso LA, Araújo EP, de Souza CT. (2008) Diet-induced inflammation of the hypothalamus in obesity. Neuroimmunomodulation. 15:189–93.
    Wee YS, Weis JJ, Gahring LC, Rogers SW, Weis JH (2015)Age-related onset of obesity corresponds with metabolic dysregulation and altered microglia morphology in mice deficient for Ifitm proteins. PLoS One. 10(4):e0123218.
    Weston S, Czieso S, White IJ, Smith SE, Kellam P, Marsh M. (2014) A membrane topology model for human interferon inducible transmembrane protein 1. PLoS One 9(8):e104341.
    Yount JS, Karssemeijer RA, Hang HC. (2012) S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem 287, 19631–41.
    Zhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M. (2013) Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci. 33:3624–3632.
    Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 135(1):61–73.
    Zhang Z, Liu J, Li M, Yang H, Zhang C. (2012) Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates. PLoS One 7(11):e49265.
    Description: 碩士
    國立政治大學
    神經科學研究所
    104754006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104754006
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.IN.003.2018.C05
    Appears in Collections:[Graduate Institute of Neuroscience] Theses

    Files in This Item:

    File SizeFormat
    400601.pdf2212KbAdobe PDF223View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback