English  |  正體中文  |  简体中文  |  Items with full text/Total items : 88295/117812 (75%)
Visitors : 23401383      Online Users : 143
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 企業管理學系 > 學位論文 >  Item 140.119/119870
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/119870


    Title: 付費教育內容平台產品特性對消費者持續使用意向的影響
    The impact of product features on educational content paid platforms to consumers' continued usage intentions
    Authors: 陳菡
    Chen, Han
    Contributors: 黃思明
    Hwang, Syming
    陳菡
    Chen, Han
    Keywords: 付費教育內容平台
    內容質量
    產品化程度
    消費者持續使用意向
    學習風格
    Educational content Paid Platform
    Content quality
    Production degree
    Consumers' continued Usage Intentions
    Learning style
    Date: 2018
    Issue Date: 2018-09-03 15:46:18 (UTC+8)
    Abstract: 本研究主要探討在互聯網引入價格和經濟回報機制之後,有哪些因素會進壹步提高消費者對內容產品和平台的價值認知,從而影響對平台的持續使用意向。基於抉策支持系統理論、資訊系統成功模型理論和泛在學習理論,來探討消費者對於付費的內容平台之持續使用的意向有哪些影響因素。又考慮到本研究希望能夠幫助企業平台端解決知識內容產品化過程中的壹些實務問題,比如,能夠促進消費者付費的內容產品應該具備哪些特性,產品化的技術支援應該具備哪些特性,不同學習風格的消費者是否都能夠接受如上特性。因此,確定本研究的四個研究構念,分別為內容質量、產品化程度、學習風格以及消費者持續使用意向。

    研究中針對10個大陸地區最具代表性的付費教育內容平台,對其使用過平台的消費者做線上問卷調研,收集403份問卷並加以作統計分析。問卷統計結果顯示內容質量與產品化程度構念,及其所涵蓋平台產品特性,對於消費者是否願意繼續使用該平台,具有正向影響的關系。研究中進壹步發現,消費者學習風格中的視覺型消費者又表現出對上述正向影響,具有關系加強的調節作用。本研究證實付費教育內容平台若具備高內容質量和高產品化程度,那麼平台方即可有效率的提供消費者有效果的內容產品,從而促進消費者保持對該平台的使用意向。同時,也證實了學習風格為視覺型的消費者對此類付費教育內容平台未來行銷的重要意義。本研究結果可以幫助付費內容平台清晰自身和其產品類型在內容市場中的定位,實現平台企業的可持續發展運營。並開創式的形成該領域較系統性的研究,貢獻此前該領域學術研究比較匱乏的狀況。
    This study mainly discusses what factors will further enhance consumers' value cognition of content products and platforms, thus affecting their intention to use the platform continuously, after the introduction of price and economic return mechanism into the Internet. Based on the theory of decision support system, the theory of information system success model and the theory of ubiquitous learning, this study discusses the influence factors of consumers' intention to keep using the paid content platform. And considering that this study is hoped to help the enterprise platform to solve some practical problems in the process of producing knowledge content, for example, the characteristics of content products that can promote consumer payment, what features should be available for the technical support of production, and whether consumers with different learning styles can accept such features. Therefore, the four research constructs of this study are decided, they are content quality, production degree, learning style and consumer's intention to continue to use.

    In the study, the consumers who had used 10 of the most representative paid platforms with education content in the mainland China were investigated by online questionnaire, 403 questionnaires were collected and analyzed statistically. The result of the questionnaire shows that the quality of content and the degree of production, as well as the product characteristics of the platform, have a positive impact on consumers' willingness to continue to use the platform. In the further study, it is found that the visual consumers in the learning style of consumers also show positive effects on the above mentioned, which has the regulating effect of strengthening the relationship. This study confirms that if the paid platform with education content has high content quality and high production level, the platform can provide products with effective content to the consumers efficiently, thus promoting the consumers to maintain their intention to use the platform. At the same time, it is also confirmed the importance of the future marketing about this kind of paid platform with educational content by visual consumers of learning style. The result of this study can help the paid platform with educational content to clearly define itself and the types of the product in the content market, and realize the sustainable development and operation of the enterprises with the platform. And the systematic research in this field is formed in a pioneering way, contributing to the lack of academic research in this field.
    Reference: 參考文獻

    36氪研究院 (2017),「36氪知識新經濟報告」,(取得時間:2018年6月5日),https://www.sohu.com/a/138680915_114778。
    中國互聯網路資訊中心 (2017),中國互聯網路發展狀況統計報告,http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201708/t20170803_69444.htm。
    中國報告網 (2017),「2017年我國知識付費產業發展歷程簡述及付費目的分析」,(取得日期:2018年4月6日),http://free.chinabaogao.com/wenti/201709/091429563H017.html。
    —— (2018),「2018年我國知識付費平台行業用戶數量戶付費意願分析」,(取得日期:2018年4月6日),http://market.chinabaogao.com/wenhua/01S120612018.html。
    方吉正 (2006),情境認知學習理論與教學應用,學習與教學新趨勢,台北市:心理,345-402。
    方軍 (2017),付費:互聯網知識經濟的興起,北京:機械工業出版社。
    企鵝智酷 (2016),「知識付費經濟報告:多少中國線民願意花錢買經驗?真象大資料」,(取得日期:2018年4月6日),http://tech.qq.com/original/archives/b122.html。
    艾媒報告 (2017),「2017年中國知識付費市場研究報告」,艾媒諮詢,(取得日期:2018年4月6日),http://www.iimedia.cn/59925.html。
    行業報告研究院 (2017),「36Kr:知識付費行業研究報告」,搜狐,(取得日期:2018年6月10日),http://www.sohu.com/a/161402568_720186。
    世界衛生組織 (2018),「年齡」,世界衛生組織官網,(取得日期:2018年8月19日),http://www.who.int/ageing/en/。
    漢菊德 (1999),探索身體資源:身體、真我、超我,臺北市:心理出版社,頁66-72。
    李玉先 (2009),學習風格與認知風格關係的研究,安徵工業大學學報:社會科學版,頁26。
    李坤清,陳怡婷 (2016),不同思考方式、教學方法和學習風格對行動學習使用行為之影響,數位學習科技期刊,4(8):17-47。
    李壽欣,周穎萍 (2004),試論認知方式與學習風格的關係,山東師大學學報:人文社會科學版,49(4)。
    李妙玲 (2014),用戶生成內容研究綜述,圖書館學研究,16:21-27。
    王傳珍 (2017),「中國知識付費行業發展白皮書2017」,易觀分析,(取得日期:2018年6月10日),https://www.analysys.cn/analysis/trade/detail/1001061/。
    吳文忠 (1977),體育概論,正光,台北市:正中書局。
    周波,張芳 (2013),知識市場情境的知識品質評價模型,管理學報,第10卷,第10期,頁1535-1544。
    姚梅林 (2003),從認知到情境:學習範式的變革,教育研究,2:8-12。
    施賀建 (2003),學習風格與方式對學習成效之影響—以互動式與否為基礎,台灣中原大學,http://etds.ncl.edu.tw/theabs/site/sh/detail_result.jsp?id=091CYCU5396008。
    郝圓 (2017),「知識付費半局:喜馬拉雅暫時領跑、平台大佬正後起直追」,(取得日期:2018年4月15日),http://money.jrj.com.cn/2017/12/31084223876904.shtml。
    高志勇,高建民,陳富民 (2005),數位化製造中的資訊品質問題研究,電腦集成製造系統,11(7):981-985。
    問卷星 (2018),官網首頁,(取得日期:2018年4月23日),https://www.wjx.cn。
    常浩 (2015),基於資訊系統期望模型的慕課研究,太原大學教育學院學報,02:90-92。
    康萍,崔曉會 (2015),基於使用者滿意度視角的統計知識品質評價,統計與決策,第13卷,第29期,頁105-108。
    張哲,王以寧,陳曉慧,高炎 (2015),MOOC持續學習意向影響因素的實證研究——基於改進的期望確認模型,電化教育研究,05: 30-36。
    張劍平,熊才平 (2005),資訊技術與課程整合,浙江大學出版社,頁10。
    陳威如,余卓軒 (2013),平台戰略,中信出版社:北京,頁192 -193。
    陳美玲,白興瑞,林艷 (2014),移動學習用戶持續使用行為影響因素實證研究,中國遠程教育,12(41):47-96。
    彭蘭 (2014),從網路媒體到網路社會——中國互聯網20年的漸進與擴張,新聞記者,4:15-21。
    華興資本 (2017),「1500億風口探秘:得到、知乎們如何玩轉知識付費? 」,(取得時間:2018年6月5日),http://36kr.com/p/5079884.html。
    新知榜 (2018),官網首頁,(取得時間:2018年4月23日),https://www.wingmakersunion.com/xinzhibang.html。
    楊根福 (2016),MOOC用戶持續使用行為影響因素研究,開放教育研究,1:100-111。
    遊政男 (2001),學習風格與超媒體網頁架構方式對學習鐘擺週期之影響,台灣國立東華大學教育研究所,http://etds.ncl.edu.tw/theabs/site/sh/detail_result.jsp?id=093NKNU0395002。
    趙延昇,高佳 (2015),移動社交支付 APP消費者持續使用意願研究,大連理工大學學報,第36卷,第4期,頁47-52。
    劉和海,李少鵬,王琪 (2016),「互聯網+」時代知識觀的轉變:從共建共用到眾傳共推,中國電化教育,12:108-112。
    劉蘭,徐樹維 (2009),微內容及微內容環境下未來圖書館發展,圖書情報工作,3:34-37。
    潘旭偉,顧新建,仇元福 (2003),面向知識管理的知識建模技術,電腦集成製造系統,第9卷,第7期,頁517-521。
    潘基鑫,雷要曾,程璐璐,石華 (2010),泛在學習理論研究綜述,遠端教育雜誌,頁2。
    錢瑛 (2015),在線學習用戶持續使用行為的影響因素研究——基於社會化網絡環境的學情定位視角,現代情報,03:50-56。
    羅瑉,李亮宇 (2015),互聯網時代的商業模式創新:價值創造視角,中國工業經濟,57(1):95-107。

    Ajzen, I., & M. Fishbein (2008), Scaling and Testing Multiplicative Combinations in the Expectancy-Value Model of Attitudes, Journal of Applied Social Psychology, 38(9), 2222-2247.
    Alter, Steven (1980), Decision Support Systems, Current Practice and Continuing Challenges, Reading, MA: Addison-Whesley Publishing Company.
    ——, —— (2002), A Work System View of DSS in its Fourth Decade, Decision Support System, 38(3): 319-327.
    Arora, Monika & Deepankar Chakrabarti (2014), Knowledge Quality Assessment in Knowledge Management Systems, International Journal of Knowledge Management and Practices, 2(2): 1-5.
    Ausubel, D. P. (1954), Theory and Problems of Adolescent Development, New York : Grune and Statton.
    Ballou, D. P. & H. L. Pazer (1985), Modeling Data and Process Quality in Multi-input, Multi-output Information Systems, Management Science, 31(2): 192-219.
    Bagozzi, R. P. & Yi, Y. (1988), On the Evaluation of Structural Equation Models, Journal of the Academy of Marketing Science, 16(1): 74-94.
    Bhattacherjee, A. (2001), Understanding Information Systems Continuance: An Expectation Confirmation Model, MIS Quarterly, 25(3): 351-370.
    Bonczek, R. H., C. W. Holsapple & A. B. Whinston (1980), The Evolving Roles of Models in Decision Support Systems, Decision Sciences, 11(2): 337-356.
    Brown, J. S., A. Collins, & P. Duguid (1989), Situated cognition and the culture of learning, Educational Researcher, 18(1): 32-42.
    Carver, C. A., Jr., R. A. Howard & W. D. Lane (1999), Enhancing Student Learning through Hypermedia Courseware and Incorporation of Student Learning Styles, IEEE Transactions on Education, 42(1): 33-38.
    Clarian, R. B. (1997), Considering Learning Style in Computer-Assisted Learning, British Journal of Educational Technology, 28(1): 66-68.
    DeLone W. H, & E. R. McLean (1992), Information Systems Success: The Quest for the Dependent Variable, Information Systems Research, 6(2): 252-263.
    DeLone, W. H, & E R. McLean (2003), The DeLone and McLean Model of Information Systems Success: A Ten-Year Update, Journal of Management Information Systems, 19(9): 9-30.
    Dou W Y. (2004), Will Internet Users Pay for Online Content? Journal of Advertising Research, 44(4): 349-335.
    Eppler, M. J. (2003), Managing Information Quality: Increasing The Value of Information in Knowledge Intensive Products and Processes, Berlin: Springer Verlag.
    Erdemir, A., D. Cavdar, V. Bagci & E. C. Corbaci (2016), Factors Predicting E-Learners' Satisfaction On Online Education, Proceedings of MAC-ETeL, 2016: 53.
    Evans, J., & W. Lindsay (2005), The Management and Control of Quality, Mason, OH: Thomson.
    FitzGerald, E., (2012), Creating User-Generated Content for Location-Based Learning: An Authoring Framework. Journal of Computer Assisted Learning, 28: 195-207.
    Felder, R. M. & B. A. Soloman (1997), Index of Learning Styles Questionnaire, Retrieved 20 December 2008, from www.engr.ncsu.edu/learningstyles/ilsweb.html.
    Felder, R. M. & Silverman, L. K. (1988), Learning and Teaching Styles in Engineering Education, Journal of Engineering Education, 78(7): 674-681.
    Gorry, A. G. & M. S. Scott Morton (1972), Framework for Management Information Systems, Sloan Management Review, 13(1): 55-70.
    Goodhue, Dale L. & Ronald L. Thompson (1995), Task-technology fit and individual performance, MIS Quarterly, 19(2): 213-236.
    Graf, S., S. R. Viola, T. Leo & Kinshuk (2007), In-Depth Analysis of the Felder-Silverman Learning Style Dimensions, Journal of Research on Technology in Education, 40(1): 79-93.
    Graff, M. (2003), Learning from Web-Based Instructional Systems and Cognitive Style, British Journal of Educational Technology, 34(4): 407-418.
    Hair, J. F., Ringle, C. M., &Sarstedt, M. (2011), PLS-SEM: Indeed a Silver Bullet, Journal of Marketing Theory and Practice, 19(2), 139-151.
    Harper, F. M., D. Raban, & S. Rafaeli (2008), Predictors of Answer Quality in Online Q&A Sites, Conference on Human Factors in Computing Systems, Florence, Italy, 2008:865-874.
    Hayes, J. & C. W. Allinson (1996), The Implications of Learning Styles for Training and Development: A Discussion of the Matching Hypothesis, British Journal of Management, 7(1): 63-73.
    —— & —— (1993), Matching Learning Styles and Instructional Strategy: An Application of the Person-Environment Interaction Paradigm, Perceptual and Motor Skills, 76(1): 63-79.
    Hilligoss, B. & S. Y. Rieh (2008), Developing A Unifying Framework of Crediblity Assessment: Construct, Heuristics, And Interaction in Context, Information Processing & Management, 44(4): 1467-1484.
    Holsapple, C. W. & A. B. Whinston (1987), Business Expert Systems, McGraw-Hill Professional.
    Honey, P. & A. Mumford (1992), The Manual of Learning Styles, 3rd Ed., Maidenhead: Peter Honey.
    Hsieh, Sheng-Wen, Yu-Ruei Jang, Gwo-Jen Hwang & Nian-Shing Chen (2011), Effects of Teaching and Learning Styles on Students’ Reflection Levels for Ubiquitous Learning, Computers & Education, 57(1): 1194-1201.
    Hsu, C.L. & J.C.C Lin (2008), Acceptance of Blog Usage: The Roles of Technology Acceptance, Social Influence and Knowledge Sharing Motivation, Information & Management, 54(1): 65-74.
    Ilfeld, J. S. & R. S. Winer (2002), Generating Website Traffic, Journal of Advertising Research, 42(5): 49-61.
    Jin, J., Y. Li, & X. Zhong (2015), Why Users Contribute Knowledge to Online Communities: An Empirical Study of an Online Social Q&A Community, Information & Management, 52(7): 840-849.
    Jung, C. (1923), Psychological Types, New York: Harcount, Brace & Co.
    Keen, P. G. (1980), Decision Support Systems: A Research Perspective, In: Decision Support Systems: Issues and Challenges, Oxford, New York: Pergamon Press.
    Kolb, D. A. (1984), Experiential Learning: Experience as the Source of Learning and Development, Englewood Cliffs, NJ: Princeton-Hall.
    Kuljis, J. & F. Liu (2005), A Comparison of Leaning Style Theories on the Suitability for E-Learning, In M. H. Hamza(Ed.), Proceeding of the Iasted Conference on Web Technologies, Applications, and Services, Acta Press, 191-197.
    Lee, M. C. (2010), Explaining and Predicting Users Continuance Intention Toward E-Learning: An Extension of the Expectation Confirmation Model, Computers & Education, 54(2): 506-516.
    Lin, K. M. (2011), E-Learning Continuance Intention: Moderating Effects of User E-Learning Experience, Computers & Education, 56(2): 515-526.
    Lin, W. S. & C. H. Wang (2012), Antecedence to Continued Intentions of Adopting E-Learning System in Blended Learning Instruction: A Contingency Framework Based on Models of Information System Success and Task-Technology Fit, Computers & Education, 58(1): 88-99.
    Lumsdaine, M. & E. Lumsdaine (1993), Thinking Preferences of Engineering Students: Implications for Curriculum Restructuring, Journal of Engineering Education, 84(2): 193-204.
    Mampadi, F., S. Y. Chen, G. Ghinea & M.-P. Chen (2010), Design of Adaptive Hypermedia Learning Systems: A Cognitive Style Approach, Computers & Education, 56(4): 1003-1011.
    Marschak, J. (1971), Economics of Information Systems, Journal of the American Statistical Association, 66(333): 270-341.
    Mason, R. O. (1978), Measuring Information Output: A Communication Systems Approach, Information and Management, 1(5): 219-234.
    Mckinney, V., K. Yoon & F, M. Zahedi (2002), The Measurement of Web-Customer Satisfaction: An Expectation and Disconfirmation Approach, Information Systems Research, 13: 296-315.
    Moore, J. H. & G. M. Chang (1980), Design of Decision Support Systems, Data Base, 12: 1-2.
    Myers, I. B. (1962), The Myers-Briggs Type Indicator Manual Princeton, NJ: Educational Testing Service.
    Oliver, R. L. (1980), A Cognitive Model of the Antecedents and Consequences of Satisfaction Decision, Journal of Marketing Research, 17(4): 460-469.
    Palloff, R.M. & K. Pratt (2004), O Aluno Virtual: Um Guia Para Trabalhar Com Estudantes Online, Porto Alegre, RS: Artmed.
    Pat, C. A. (2003), Gender and Learning Style Interactions in Students’ Computer Attitudes, Educational Computing Research, 28(3): 231-244.
    Pipino, L. L., Y. W. Lee & R. T. Wang (2002), Data Quality Assessment, Communications of the Association for Computing Machinery, 45(4): 211-218.
    Rasmussen, K. & G. Davidson-shivers (1998), Hypermedia and Learning Styles: Can Performance Be Influenced, Journal of Educational Multimedia and Hypermedia, 7(4): 291-308.
    Riding, R. J. (1991), Cognitive Styles Analysis – CSA Administration, Birmingham: Learning and Training Technology.
    Rieh, S. Y. (2002), Judgement of Information Quality and Cognitive Authority in the Web, Journal of the American Society for Information Science and Technology, 53(2): 145-161.
    Roca, J. C. & M. Gagne (2008), Understanding E-Learning Continuance Intention in The Workplace: A Self-Determination Theory Perspective, Computers in Human Behavior, 24(4): 1585-1604.
    Roca, J. C., C. M. Chiu & F. J. Martinez (2006), Understanding E-Learning Continuance Intention: An Extension of the Technology Acceptance Model, International Journal of Human-Computer Studies, 64(8):683-696.
    Roy, M. & M. T. H. Chi (2003), Gender Differences in Patterns of Searching The Web, Educational Computing Research, 29(3): 335-348.
    Schwab, D. P. (2005), Research Methods for Organizational Studies, Lawrence Erlbaum Associates, Mahwah, New Jersey: Lawrence Erlbaum Associates.
    Seddon, P. B. (1997), A specification and extension of the DeLone and McLean model of IS success, Information Systems Research, 8(3): 240-253.
    Shannon, C. E. & W. Weaver (1949), The Mathematical Theory of Communication, Urbana University of Illinois Press.
    Krishnamurthy, S. & W. Dou (2008), Note from Special Issure Editors: Advertising with User-Generated Content: A Framework and Research Agenda. Journal of Interactive Advertising, 8(2): 1-4.
    Shi, W. W. (2009), An Empirical Research on Users' Acceptance of Smart Phone Online Application Software, International Conference on Electronic Commerce and Business Intelligence, 106 -110, Linz, Austria.
    Silver, H. F., R. W. Strong & M. J. Perini (2000), So Each May Learn: Integrating Learning Styles and Multiple Intelligences. Ascd.
    Silva, D. M. D., Leal, E. A., Pereira, J. M., & Oliveira Neto, J. D. D. (2015). Learning styles and academic performance in Distance Education: a research in specialization courses. Revista brasileira de gestão de negócios, 17(57): 1300-1316.
    Slywotzky, Adrian J. and David J. Morrison (2000), Pattern Thinking: A Strategic Shortcut, Chicago: Strategy & Leadership, 28(1): 12-17.
    Solomon, Michael R. (2009), Consumer Behavior -Buying, Having, and Being, 8th Edition, Prentice Hall, 117-118.
    Spraque, Ralph H. & Eric D. Carlson (1982), Building Effective Decision Support System Prentice Hall, Inc., Englewood Cliffs, NG.
    Sproles, E. K. & G. B. Sproles (1990), Consumer decision-making Styles as a Function of Individual Learning Styles, The Journal of Consumer Affairs, 24: 134-147.
    Spurlin, J. & R. M. Felder (2005), Applications, Reliability and Validity of the Index of Learning Styles, International Journal on Engineering Education, 21(1): 103–112.
    Tseng, Judy, Hui-Chun Chu, Gwo-Jen Hwang & Chin-Chung Tsai (2007), Development of an Adaptive Learning System with Two Sources of Personalization Information, Computers & Education.
    Turban, E., D. King, J.K. Lee, T. P. Liang & D.C. Turban (2015), Electronic Commerce: Managerial and Social Networks Perspectives, 7th edition, Springer International Publishing: Switzerland, 228-229.
    Van Zwanenberg, N., L. J. Wilkinson & A. Anderson (2000), Felder and Silverman’s Index of Learning Styles and Honey and Mumford’s Learning Styles Questionnaire: How Do They Compare and Do They Predict Academic Performance? Educational Psychology, 20(3), 365-380.
    Venkatesh, V., & F. D. Davis (2000), A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies, Management Science, 46(2): 186-204.
    Venkatesh, V., M. G. Morris, G. B. Davis & Davis, F. D. (2003), User Acceptance of Information Technology: Toward A Unified View, MIS Quarterly, 27, 425-478.
    Wang, Y. S. (2008), Assessing E-Commerce Systems Success: A Specification and Validation of the DeLone and McLean Model of IS Success. Information Systems Journal, 18(5):529-557.
    Weidema, B. P. & M.S. Wesnaes (1996), Data Quality Management for Life Cycle Inventories— An Example of Using Data Quality Indicators, Journal Cleaner Production, 4(3-4): 176-174.
    Weiser, M. (1991), The computer for the 21st Century, Scientific American, 265(9): 66-75.
    Witkin, H. A. (1949), the Nature and Importance of Individual Differences in Perception, Journal of Personality, 18(2): 145-70.
    Wolk A, & S. Theysohn (2007), Factors Influencing Website Traffic in the Paid Content Market, Journal of Marketing Management, 23 (7-8): 769-796.
    Zywno, M. S. (2003), A Contribution to Validation of Score Meaning for Felder-Soloman’s Index of Learning Styles, Proceedings of the 2003 American Society for Engineering Annual Conference and Exposition, Nashville, TN.
    Description: 博士
    國立政治大學
    企業管理學系
    104355513
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1043555131
    Data Type: thesis
    DOI: 10.6814/DIS.NCCU.BA.005.2018.F08
    Appears in Collections:[企業管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    513101.pdf4313KbAdobe PDF129View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback