English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 83599/112375 (74%)
造訪人次 : 21937172      線上人數 : 331
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 資訊科學系 > 學位論文 >  Item 140.119/120260
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/120260


    題名: 基於圖論之高通量染色體結構捕獲連結網路視覺化與分析
    Apply graph theory to visualizing and analyzing Hi-C contact network
    作者: 甘岱珺
    Kan, Tai-Chun
    貢獻者: 張家銘
    Chang, Jia-Ming
    甘岱珺
    Kan, Tai-Chun
    關鍵詞: Hi-C
    連結熱圖
    連結網路
    圖論
    網路嵌入
    資料視覺化
    Shiny
    Hi-C
    Contact map
    Contact network
    Graph theory
    Network embedding
    Information visualization
    Shiny
    日期: 2018
    上傳時間: 2018-10-01 12:11:00 (UTC+8)
    摘要: 在本研究中主要探討於遠距離規模下基因片段交互作用的情況,並且運用網路拓撲分析其表現模式和生物性功能。網路特性能夠有效率地測量圖論中節點的重要性,以及節點彼此之間的關聯性,藉此辨識在生物系統裡的中心元素。本研究應用各種網路拓撲方法分析高通量染色體結構捕獲連結網路,然後結合 t-SNE 和 Network Embedding 進行資料分群。此外,HiCONET 是針對 Hi-C 資料提供連結熱圖和網路結構視覺化的服務平台。圖形化介面可以協助使用者在視覺上搜尋特定資料模式,同時連結熱圖與網路圖中相關聯的資料內容。借助 R Shiny 平台,使用者能夠透過點選視覺化結果和調整參數,互動式地探索其感興趣的資料範圍。此網路服務平台的網址是 https://changlab.shinyapps.io/hiconet/。
    In this work we explore the interactions of gene regions in long-range scale with network topologies for analyzing expression patterns and biological functionalities. Network features help us efficiently measure the significance of nodes and relationships between other nodes, in order to identify the central elements in a biological system. We apply different network topological measures in analyzing Hi-C contact network, then use t-SNE and network embedding method for clustering. Furthermore, we developed a web server to visualize Hi-C data by contact map and network, HiCONET. The graphical interface lets users visually search for patterns in the Hi-C data, as simultaneously plotting related genomic region among contact map and network. Besides, users can interactively explore interesting regions through clicking network or selecting parameters of Hi-C data thanks to R Shiny platform. The server is free available in https://changlab.shinyapps.io/hiconet/.
    參考文獻: 1.T. Sexton, E. Yaffe, E. Kenigsberg, F. Bantignies, B. Leblanc, M. Hoichman, H. Parrinello, A. Tanay, and G.
    Cavalli, “Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome,” in Cell
    148, pp. 458-472, 2012.
    2.B. Bonev and G. Cavalli, “Organization and function of the 3D genome,” in Nature Reviews Genetics volume 17,
    pp. 661-678, 2016.
    3.S. Rosa and P. Shaw, “Insights into chromatin structure and dynamics in plants,“ in Biology (Basel), Vol. 2(4), pp.
    1378-1410, 2013.
    4.J. R. Dixon, D. U. Gorkin, and B. Ren, "Chromatin domains: the unit of chromosome organization," in Mol. Cell,
    Vol. 62, pp. 668-680, 2016.
    5.J. Dostie, J. Dekker, “ Mapping networks of physical interactions between genomic elements using 5C technology,”
    in Nat. Protoc. 2, pp. 988-1002, 2007.
    6.A. S. Belmont, "Large-scale chromatin organization: the good, the surprising, and the still perplexing," in Curr. Opin.
    Cell Biol., Vol. 26, pp. 69-78, 2014.
    7.K. S. Sandhu, G. Li , H. M. Poh, ..., Y. Ruan, “Large-scale functional organization of long-range chromatin
    interaction networks,” in Cell Rep, Vol. 2(5), pp. 1207-1219, 2012.
    8.J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, “Capturing chromosome conformation,” in Science, Vol. 295, pp.
    1306-1311, 2002.
    9.A. Pombo, and N. Dillon, "Three-dimensional genome architecture: players and mechanisms," in Nat. Rev. Mol.
    Cell Biol., Vol. 16, pp. 245-257, 2015.
    10. J. Dekker, “The three ‘C’ s of chromosome conformation capture: controls, controls, controls,” in Nat. Methods 3,
    pp. 17-21, 2006.
    11. Z. Zhao, G. Tavoosidana, M. Sjolinder, A. Gondor, ..., U. Singh, “Circular chromosome conformation capture (4C)
    uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions,” in Nat. Genet.
    38, pp. 1341-1347, 2006.
    12. E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, ..., J. Dekker, “Comprehensive mapping of long
    range interactions reveals folding principles of the human genome,” in Science, Vol. 326(5950), pp. 289-293, 2009.
    13. W. de Laat and D. Duboule, “Topology of mammalian developmental enhancers and their regulatory landscapes,” in
    Nature, Vol. 502, pp. 499-506, 2013.
    14. Nora E.P. , Lajoie B.R., Schulz E.G., Giorgetti L., Okamoto I., Servant N., Piolot T., van Berkum N.L., Meisig J.,
    Sedat J.et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature . 2012; 485:381–
    385.
    15. N. Matharu and N. Ahituv, “Minor Loops in Major Folds: Enhancer-Promoter Looping, Chromatin Restructuring,
    and Their Association with Transcriptional Regulation and Disease,” in PLoS Genet, 2015.
    16. G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, ..., P. G. Bagos, “Using graph theory to analyze biological
    networks,” in BioData Min. 4, 10, 2011.
    3917. C. Chin, S. Wu, H. Ho, M. Ko, and C. Lin, “cytoHubba: Identifying hub objects and sub-networks from complex
    interactome,” in BMC Systems Biology, 8(Suppl 4):S11, 2014.
    18. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási, “The large-scale organization of metabolic
    networks,” in Nature, Vol. 407, pp. 651-654, 2000.
    19. J. B. Morlot, J. Mozziconacci, and A. Lesne, “Network concepts for analyzing 3D genome structure from
    chromosomal contact maps,” in EPJ Nonlinear Biomed Phys, 4: 2, 2016.
    20. M. W. Schmid, S. Grob, and U. Grossniklaus, “HiCdat: a fast and easy-to-use Hi-C data analysis tool,” in BMC
    Bioinformatics, Vol. 16, pp. 277, 2015.
    21. G. Castellano, F. Le Dily, A. Hermoso Pulido, M. Beato, and G. Roma, “Hi-Cpipe: a pipeline for high-throughput
    chromosome capture,” in bioRxiv. Cold Spring Harbor Labs Journals, 2015.
    22. E. C. Schofield, T. Carver, P. Achuthan, P. Freire-Pritchett, M. Spivakov, J. A. Todd, O. S. Burren, “CHiCP: a web-
    based tool for the integrative and interactive visualization of promoter capture Hi-C datasets,” in Bioinformatics,
    Vol. 32, Issue 16, pp. 2511–2513, 2016.
    23. N. C Durand, J. T. Robinson, M. S. Shamim, I. Machol, J. P. Mesirov, E. S. Lander, and E. Lieberman Aiden,
    “Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom,” in Cell Systems 3(1), 2016.
    24. R. Kumar, H. Sobhy, P. Stenberg, and L. Lizana, “Genome Contact Map Explorer - A platform for the comparison,
    interactive visualization and analysis of genome contact maps,” in Nucleic Acids Res, Vol. 45, Issue 17, pp. e152,
    2017.
    25. A. Thibodeau, E. J. Márquez, O. Luo, Y. Ruan, F. Menghi, D. G. Shin, M. L. Stitzel, P. Vera-Licona, and D. Ucar,
    “QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks, ” in PLoS Comput Biol, 2016.
    26. S. Babaei, A. Mahfouz, M. Hulsman, B. P. Lelieveldt, J. de Ridder, and M. Reinders, “Hi-C chromatin interaction
    networks predict co-expression in the mouse cortex,” in PLoS Comput Biol, 11(5):1004221, 2015.
    27. B. Schuettengruber, N. Oded Elkayam, T. Sexton, M. Entrevan, S. Stern, A. Thomas, E. Yaffe, H. Parrinello, A.
    Tanay, and G. Cavalli, “Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila,”
    in Cell Reports, 2014.
    28. Q. Szabo, D. Jost, J. M. Chang, ... and G. Cavalli, “TADs are 3D structural units of higher-order chromosome
    organization in Drosophila,” in Science Advances, 2018.
    29. T. Schauer, Y. Ghavi-Helm, T. Sexton, ... , P. B. Becker, “Chromosome topology guides the Drosophila Dosage
    Compensation Complex for target gene activation,” in EMBO reports, 2017.
    30. Ay F, Noble WS. Analysis methods for studying the 3D architecture of the genome. Genome Biol. 2015;16:1–15.
    31. Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell
    Biol. 2016;17:743–55.
    32. P. Erdös and A. Rényi, “On the evolution of random graphs,” in Publ. Math. Inst. Hung. Acad. Sci, Vol. 5, pp. 17-61,
    1960.
    33. B. A. László and A. Réka, “Emergence of Scaling in Random Networks,” in Science, Vol. 286, Issue. 5439, pp.
    509-512, 1999.
    4034. Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu, “A Survey on Network Embedding,” in arXiv preprint
    arXiv:1711.08752, 2017.
    35. Xiangyu Li, Weizheng Chen, Yang Chen, Xuegong Zhang, Jin Gu Michael, and Q. Zhang, “Network embedding-
    based representation learning for single cell RNA-seq data,” in Nucleic Acids Research, Vol 45, Issue 19, pp. E166,
    2017.
    36. Jian Tang, Qu Meng, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei, “Line: Large-scale information
    network embedding,” in Proceedings of the 24th International Conference on World Wide Web, 2015.
    37. B. Perozzi, R.i Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social Representations,” in KDD '14
    Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701-
    710, 2014.
    38. L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” in Journal of Machine Learning Research, Vol. 9,
    pp. 2579-2605, 2008.
    39. H. Jeong, S. P. Mason, A. L. Barabási and Z. N. Oltvai, “Lethality and centrality in protein networks,” in Nature,
    Vol. 411, pp. 41-42, 2001.
    描述: 碩士
    國立政治大學
    資訊科學系
    105753026
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105753026
    資料類型: thesis
    DOI: 10.6814/THE.NCCU.CS.014.2018.B02
    顯示於類別:[資訊科學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    302601.pdf1427KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋