English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 90773/120835 (75%)
Visitors : 25109683      Online Users : 305
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/120807
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/120807

    Title: Using Chinese radical parts for sentiment analysis and domain dependent seed set extraction
    Authors: Chao, August F.Y.
    Yang, Heng-Li
    Contributors: 資管系
    Keywords: Sentiment analysis;Chinese radical;Restaurant review analysis;Domain-dependent seed
    Date: 2018-01
    Issue Date: 2018-10-29 17:21:56 (UTC+8)
    Abstract: Although there has been good progress in English sentiment analysis and resources, studies in English cannot be directly used in Chinese owing to the nature of Chinese language. Previous studies suggested adopting linguistic information, such as grammar and morpheme information, to assist in sentiment analysis for Chinese text. However, morpheme-based approaches have a problem in identifying seeds. In addition, these methods do not take advantage of radicals in the characters, which contain a great deal of semantic information. A Chinese word is composed of one or more characters, each of which has its radical part. We can interpret the partial meaning of a character by analyzing that of the radical in the character. Therefore, we not only consider the radical information as the semantic root of a character, but also consider the radical parts between characters in a word as an appropriate linguistic unit for conducting sentiment analysis. In this study, we conducted a series of experiments using radicals as the feature unit in sentiment analysis. Using segmented results from part -of-speech tools as a meaningful linguistic unit (word) in Chinese, we conducted analyses of single-feature word (unigram) and frequently seen two words (pointwise mutual information collocated bigrams) through various sentiment analysis measures. It is concluded that radical features could work better than word features and would consume less computing memory and time. An extended study of the extraction of seeds was also conducted, and the results indicated that 50 seed radical features performed well. A cross-corpus comparison was also conducted; the results demonstrated that the use of 50 extracted radical features as domain-dependent keywords worked better than other sentiment analysis strategies. This study confirmed that radical information could be adopted as a feature unit in sentiment analysis and that domain-dependent radicals could be reused in different corpora. (C) 2017 Elsevier Ltd. All rights reserved.
    Relation: COMPUTER SPEECH AND LANGUAGE, 47, 194-213
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.csl.2017.07.007
    DOI: 10.1016/j.csl.2017.07.007
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    194.pdf6461KbAdobe PDF253View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback