English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93244/123616 (75%)
Visitors : 27847547      Online Users : 570
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 會議論文 >  Item 140.119/121084
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/121084

    Title: Robust diagnostics for the negative binomial regression model
    Authors: 鄭宗記
    Cheng, Tsung-Chi
    Contributors: 統計學系
    Date: 2017-06
    Issue Date: 2018-11-26 17:15:40 (UTC+8)
    Abstract: Modeling count variables is a common task in econometrics, social and medical sciences. The negative binomial (NB) regression model is one of the popular approaches to the fitting of overdispersed count data. However, outliers may have some effects on the maximum likelihood estimates of the regression coefficients for NB regression model. We apply the maximum trimming likelihood estimation to deal with outlier problem for the count regression model. Real data examples are used to illustrate the performance of the proposed approach.
    Relation: The 1st International Conference on Econometrics and Statistics (HKUST), Hong Kong University of Science and Technology (HKUST) Business School
    EcoSta 2017, Parallel Session F, Friday 16.06.2017 08:30 - 09:50, EC282 Room LSK1009 CONTRIBUTIONS IN COMPUTATIONAL AND NUMERICAL METHODS
    Data Type: conference
    Appears in Collections:[統計學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    BoA_EcoSta2017.pdf2841KbAdobe PDF102View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback