English  |  正體中文  |  简体中文  |  Items with full text/Total items : 88295/117812 (75%)
Visitors : 23399368      Online Users : 60
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/124684
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/124684

    Title: 無母數多元製程位置管制圖之研究
    The Study of Multivariate Process Location Control Chart
    Authors: 林奕志
    Lin, Yi-Chih
    Contributors: 楊素芬
    Yang, Su-Fen
    Lin, Yi-Chih
    Keywords: 資料深度
    Data depth
    Sign chart
    Exponentially weighted moving average
    Variable sampling interval
    Variable dimension
    Average run length
    Average time to signal
    Date: 2019
    Issue Date: 2019-08-07 16:01:37 (UTC+8)
    Abstract: 在工業產品製程中,管制圖為監控產品品質重要的工具。大多數的產品資料屬於多維度且不一定服從常態分配,因此無分配假設的多維度管制圖之研究更是相當重要。本文提出結合資料深度 (data depth) 與符號管制圖 (sign chart) 。建立一個新的指數加權移動平均 (EWMA) 的追蹤統計量來監控產品製程平均數向量是否有失控,並利用平均連串長度 (ARL) 來衡量所提出的新管制圖的表現。此外,我們加入變動抽樣區間時間 (VSI) 的監控技巧與考慮變動維度 (VD)的想法以降低偵測製程失控所需的時間及成本。我們利用管制圖偵測出異常訊息所需的平均時間 (ATS) 來衡量所提出之VSI管制圖。接下來與文獻上存在的管制圖做偵測力表現比較。經由許多不同平均數偏移情況的數值比較分析後,本文所提出的管制圖在製程平均數偏移幅度中等及大時,比其他管制圖有更好的偵測效果。因此,建議可以使用本文提出的新管制圖追蹤製程平均數向量。最後以礫石資料及半導體製程資料來示範本文所提出的管制圖之應用。
    In industrial product process, control chart is an important tool for monitoring the process quality. Since many data are multivariate and do not follow normal distribution, this makes traditional Shewhart control charts cannot be applied. So the study of non-normal multivariate control chart is very important.
    This paper combines the methods of data depth and constructing sign chart to design a new exponentially weighted moving average (EWMA) chart for monitoring the multivariate process location. Performance measurement of the proposed control chart is the average run length (ARL). In addition, techniques for variable sampling interval (VSI) and variable dimension (VD) are added to reduce the detection time of an out-of-control process and sampling cost of detecting the out-of-control process. Performance measurement of the proposed VSI control chart is using the average time to signal (ATS) under an out-of-control process.
    We would compare the detection performance of the proposed control charts with existing control charts exist in the literatures. The proposed charts show superior detection performance compared the existing control charts when the mean shifts is medium and large under the out-of-control process. Therefore, it is recommended that the proposed control charts in this paper might be applied to detect the shifts in process location. Finally, we would demonstrate the proposed control charts via using gravel data and semiconductor process data.
    Reference: [1] Altukife, F. S. (2003). A new nonparametric control chart based on the observations exceeding the grand median. Pakistan journal of statistics-all series, 19(3), pp. 343-352.
    [2] Amin, R. W., Reynolds Jr, M. R., & Saad, B. (1995). Nonparametric quality control charts based on the sign statistic. Communications in Statistics-Theory and Methods, 24(6), pp. 1597-1623.
    [3] Amin, R. W., & Widmaier, O. (1999). Sign control charts with variable sampling intervals. Communications in Statistics-Theory and Methods, 28(8), pp. 1961-1985.
    [4] Aparisi, F. (1996). Hotelling's T2 control chart with adaptive sample sizes. International Journal of Production Research, 34(10), pp. 2853-2862.
    [5] Aparisi F, Jabaloyes J, Carrion A. Statistical properties of the |S| multivariate control chart. Communications in Statistics—Theory and Methods 1999; 28:2671–2686.
    [6] Aparisi F, Jabaloyes J, Carrion A. Generalized variance chart design with adaptive sample sizes. The bivariate case.
    Communications in Statistics—Simulation and Computation 2001; 30:931–948.
    [7] Bakir, S. T. (2004). A distribution-free Shewhart quality control chart based on signed-ranks. Quality Engineering, 16(4), pp. 613-623.
    [8] Bakir, S. T. (2006). Distribution-free quality control charts based on signed-rank-like statistics. Communications in Statistics-Theory and Methods, 35(4), pp. 743-757.
    [9] Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), pp. 528-538.
    [10] Capizzi, G., & Masarotto, G. (2017). Phase I distribution-free analysis of multivariate data. Technometrics, 59(4), pp. 484-495.
    [11] Chakraborti, S., Van der Laan, P., & Bakir, S. T. (2001). Nonparametric control charts: an overview and some results. Journal of Quality Technology, 33(3), pp. 304-315.
    [12] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), pp. 448-459.
    [13] Chowdhury, S., Mukherjee, A., & Chakraborti, S. (2014). A new distribution‐free control chart for joint monitoring of unknown location and scale parameters of continuous distributions. Quality and Reliability Engineering International, 30(2), pp. 191-204.
    [14] Costa, A. F. (1997). X chart with variable sample size and sampling intervals. Journal of Quality Technology, 29(2), pp. 197-204.

    [15] Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303.
    [16] Epprecht, E. K., Aparisi, F., & Ruiz, O. (2018). Optimum variable-dimension EWMA chart for multivariate statistical process control. Quality Engineering, 30(2), pp. 268-282.
    [17] Farokhnia, M., & Niaki, S. T. A. (2019). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, pp. 1-24.
    [18] Ferrell, E. B. (1953). Control charts using midranges and medians. Industrial Quality Control, 9(5), pp. 30-34.
    [19] Grasso, M., Colosimo, B. M., Semeraro, Q., & Pacella, M. (2015). A comparison study of distribution‐free multivariate SPC methods for multimode data. Quality and Reliability Engineering International, 31(1), pp. 75-96.
    [20] Hawkins, D. M. (1991). Multivariate quality control based on regression-adiusted variables. Technometrics, 33(1), 61-75.
    [21] Hotelling, H. A. R. O. L. D. (1947). Multivariate quality control. Techniques of statistical analysis. McGraw-Hill, New York.
    [22] Li, Z., Zhang, J., & Wang, Z. (2010). Self-starting control chart for simultaneously monitoring process mean and variance. International Journal of Production Research, 48(15), pp. 4537-4553.
    [23] Li, J., Tsung, F., & Zou, C. (2014). Multivariate binomial/multinomial control chart. IIE Transactions, 46(5), pp. 526-542.
    [24] Li, C., Mukherjee, A., Su, Q., & Xie, M. (2016). Robust algorithms for economic designing of a nonparametric control chart for abrupt shift in location. Journal of Statistical Computation and Simulation, 86(2), pp. 306-323.
    [25] Liang, W., Xiang, D., & Pu, X. (2016). A robust multivariate EWMA control chart for detecting sparse mean shifts. Journal of Quality Technology, 48(3), pp. 265-283.
    [26] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), pp. 1380-1387.
    [27] Liu, R. Y., & Tang, J. (1996). Control charts for dependent and independent measurements based on bootstrap methods. Journal of the American Statistical Association, 91(436), pp. 1694-1700.
    [28] Liu, R. Y., Singh, K., & Teng, J. H. (2004). DDMA-charts: nonparametric multivariate moving average control charts based on data depth. Allgemeines Statistisches Archiv, 88(2), pp. 235-258.

    [29] Liu, L., Zi, X., Zhang, J., & Wang, Z. (2013). A sequential rank-based nonparametric adaptive EWMA control chart. Communications in Statistics-Simulation and Computation, 42(4), pp. 841-859.
    [30] Liu, L., Tsung, F., & Zhang, J. (2014). Adaptive nonparametric CUSUM scheme for detecting unknown shifts in location. International Journal of Production Research, 52(6), pp. 1592-1606.
    [31] Liu, L., Chen, B., Zhang, J., & Zi, X. (2015). Adaptive phase II nonparametric EWMA control chart with variable sampling interval. Quality and Reliability Engineering International, 31(1), pp. 15-26.
    [32] Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53.
    [33] Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. IIE transactions, 27(6), 800-810.
    [34] Lu, S. L. (2015). An extended nonparametric exponentially weighted moving average sign control chart. Quality and Reliability Engineering International, 31(1), pp. 3-13.
    [35] MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403-414.
    [36] Mahadik, S. B., & Shirke, D. T. (2011). A special variable sample size and sampling interval Hotelling’s T 2 chart. The International Journal of Advanced Manufacturing Technology, 53(1-4), pp. 379-384.
    [37] Messaoud, A., Weihs, C., & Hering, F. (2004). A nonparametric multivariate control chart based on data depth (No. 2004, 61). Technical Report/Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen.
    [38] Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions, Washington, D. C (pp. 427-435).
    [39] Pignatiello Jr, J. J., & Runger, G. C. (1990). Comparisons of multivariate CUSUM charts. Journal of quality technology, 22(3), 173-186.
    [40] Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions, 40(7), pp. 664-677.
    [41] Reynolds Jr, M. R. (1989). Optimal variable sampling interval control charts. Sequential Analysis, 8(4), pp. 361-379.
    [42] Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), pp. 239-250.

    [43] Sabahno, H., Amiri, A., & Castagliola, P. (2018). Optimal performance of the variable sample sizes Hotelling’s T 2 control chart in the presence of measurement errors. Quality Technology & Quantitative Management, pp. 1-25.
    [44] Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), pp. 43-87.
    [45] Shokrizadeh, R., Saghaei, A., & Amirzadeh, V. (2018). Optimal design of the variable sampling size and sampling interval variable dimension T2 control chart for monitoring the mean vector of a multivariate normal process. Communications in Statistics-Simulation and Computation, 47(2), pp. 329-337.
    [46] Shu, L., & Fan, J. (2018). A distribution‐free control chart for monitoring high‐dimensional processes based on interpoint distances. Naval Research Logistics (NRL), 65(4), pp. 317-330.
    [47] Tagaras, G. (1998). A survey of recent developments in the design of adaptive control charts. Journal of quality technology, 30(3), pp. 212-231.
    [48] Tang, A., Castagliola, P., Hu, X., & Sun, J. (2019). The adaptive EWMA median chart for known and estimated parameters. Journal of Statistical Computation and Simulation, 89(5), pp. 844-863.
    [49] Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate control charts for individual observations. Journal of quality technology, 24(2), 88-95.
    [50] Tran, P. H., Tran, K. P., Huong, T. T., Heuchenne, C., Nguyen, T. A. D., & Do, C. N. (2018, February). A Variable Sampling Interval EWMA Distribution-Free Control Chart for Monitoring Services Quality. In Proceedings of the 2018 International Conference on E-Business and Applications (pp. 1-5). ACM.
    [51] Wang, H., Huwang, L., & Yu, J. H. (2015). Multivariate control charts based on the James–Stein estimator. European Journal of Operational Research, 246(1), pp. 119-127.
    [52] Yang, S. F., Lin, J. S., & Cheng, S. W. (2011). A new nonparametric EWMA sign control chart. Expert systems with applications, 38(5), pp. 6239-6243.
    [53] Yang, S. F., Cheng, T. C., Hung, Y. C., & W. Cheng, S. (2012). A new chart for monitoring service process mean. Quality and Reliability Engineering International, 28(4), pp. 377-386.
    [54] Yang, S. F. (2016). An improved distribution-free EWMA mean chart. Communications in Statistics-Simulation and Computation, 45(4), pp. 1410-1427.
    [55] Yeh, A. B., Huwang, L., & Wu, Y. F. (2004). A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes. IIE Transactions, 36(9), 865-879.

    [56] Yue, J., & Liu, L. (2017). Multivariate nonparametric control chart with variable sampling interval. Applied Mathematical Modelling, 52, pp. 603-612.
    [57] Zhang, J., Zou, C., & Wang, Z. (2010). A control chart based on likelihood ratio test for monitoring process mean and variability. Quality and Reliability Engineering International, 26(1), pp. 63-73.
    [58] Zou, C., & Qiu, P. (2009). Multivariate statistical process control using LASSO. Journal of the American Statistical Association, 104(488), 1586-1596.
    [59] Zou, C., & Tsung, F. (2011). A multivariate sign EWMA control chart. Technometrics, 53(1), pp. 84-97.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106354013
    Data Type: thesis
    DOI: 10.6814/NCCU201900316
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    401301.pdf3296KbAdobe PDF0View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback