English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91913/122132 (75%)
Visitors : 25724589      Online Users : 323
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/124696
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/124696


    Title: 媒體情緒對大台北房市之影響: 文字探勘之應用
    Application of Text Mining: The Influence of Media Sentiment on Real Estate Market in Taipei Metropolitan Area
    Authors: 黃御維
    Huang, Yu-Wei
    Contributors: 陳明吉
    Chen, Ming-Chi
    黃御維
    Huang, Yu-Wei
    Keywords: 網路爬蟲
    文字探勘
    情緒分析
    媒體情緒指數
    房地產市場
    Web crawler
    Text mining
    Sentiment analysis
    Real estate market
    Media sentiment index
    Date: 2019
    Issue Date: 2019-08-07 16:04:14 (UTC+8)
    Abstract: 房地產市場的產品異質性高,再加上台灣房地產市場的資訊不對稱的問題嚴重,往往新聞媒體的資訊與消息成為市場參與者分析房市之重要來源,導致市場參與者較容易地受到媒體的風向影響,改變其對於房市的觀點。本研究透過網路爬蟲抓取2006年至2017年間共21,678篇有關台北市與新北市的房市與總體經濟新聞作為研究資料,透過文字探勘中的情緒分析方式,探討媒體情緒指數與房地產市場之關係,選取房價、房屋交易量、房屋流通天數與議價空間為房市狀況指標。本研究發現,不論新北市或是台北市,本研究編制的媒體情緒指數對於其房價、交易量與流通天數都是呈現顯著的影響,表示媒體對於房市的報導態度,會直接或間接地影響市場參與者之想法或預期,進而投入房地產市場,此外房市新聞報導的頻率對於房價、成交量與流通天數也有顯著的相關性,亦表示新聞報導量的增加,將會推升市場參與者對於下一期房市之預期。本研究也透過Copula動態相關分析,發現兩地區房價和交易量與其媒體情緒指數之動態相關性約在2012年時開始產生明顯變化,甚至由正相關轉為負相關,本研究認為此相關性具有明顯的變化是因為當時政府積極推動各項房市政策以抑制房價,例如:2011年奢侈稅的上路, 2012年實施豪宅限貸令與實施時價登錄,因此房市政策的實施,也會影響市場參與者的態度與房市展望。
    The real estate market exist high product heterogeneity, and there also is a serious problem of information asymmetry in the Taiwan real estate market. The information and news from news media often become an important source for market participants to analyze the housing market, which makes it easier for market participants to be influenced by the media's spin control and change their perspective on the housing market. We used web crawler to download 21,678 articles about the housing market and macroeconomics news of Taipei City and New Taipei City from 2006 to 2017. Through the method of text mining and emotional analysis, we want to explore the relationship between the media sentiment index and the real estate market, including house price, trading volume, circulation days and bargaining space. We found that regardless of New Taipei City or Taipei City, the media sentiment index of the two regions has a significant impact on their housing prices, trading volume and circulation days, indicating that the attitude of media's reporting towards the housing market would directly or indirectly affect the ideas or expectations of market participants, and then join the real estate market. In addition, the frequency of news reporting has a significant correlation with the price, volume and circulation days. It also indicates that the increase in volume of news will boost market participants' expectations for the housing market performance in next period.We also use Copula dynamic correlation analysis and found that the dynamic correlation between house prices and media sentiment index in the two regions began to change significantly in 2012, even from positive correlation to negative correlation. We believe that this correlation has obvious changes because the government actively promoted various housing policies to curb housing prices.
    Reference: 英文參考文獻

    Anne, K., & Poteet, S. R. (2007). Natural Language
    Processing and Text Mining: Springer.
    Baker, M., & Wurgler, J. (2007). Investor Sentiment in the
    Stock Market. Journal of Economic Perspectives, 21(2),
    129-151.
    Ball-Rokeach, Sandra J., & DeFleur, M. (1976). A Dependency
    Model of Mass Media Effects. Communication Research,
    3(1), 3-21
    Barber, B. M., & Odean, T. (2008). All That Glitters: The
    Effect of Attention and News on the Buying Behavior of
    Individual and Institutional Investors. The Review of
    Financial Studies, 21(2), 785-818.
    Beracha, E., & Wintoki, M. B. (2013). Forecasting
    Residential Real Estate Price Changes from Online
    Search Activity. Journal of Real Estate Research,
    35(3), 283-312.
    Chen, M.-C., & Patel, K. (2002). An empirical analysis of
    determination of house prices in the Taipei area.
    Taiwan Economic Review, 30(4), 563-595.
    Chen, M.-C., Tsai, I.-C., & Chang, C.-O. (2007). House
    prices and household income: Do they move apart?
    Evidence from Taiwan. Habitat International, 31(2),
    243-256.
    Dong, Z., Dong, Q., & Hao, C. (2010). HowNet and its
    computation of meaning. Paper presented at the
    Proceedings of the 23rd International Conference on
    Computational Linguistics: Demonstrations, Beijing,
    China.
    Dougal, C., Engelberg, J., García, D., & Parsons, C. A.
    (2012). Journalists and the Stock Market. The Review of
    Financial Studies, 25(3), 639-679.
    Engelberg, J. E., & Parsons, C. A. (2011). The Causal
    Impact of Media in Financial Markets. The Journal of
    Finance, 66(1), 67-97.
    Feldman, R., & Sanger, J. (2002). The Text Mining Handbook:
    Cambridge University Press.
    Fenzl, T., & Pelzmann, L. (2012). Psychological and Social
    Forces Behind Aggregate Financial Market Behavior.
    Journal of Behavioral Finance, 13(1), 56-65.
    Garcia, D. (2013). Sentiment during Recessions. The Journal
    of Finance, 68(3), 1267-1300.
    Gentzkow, M., & Shapiro, J. M. (2010). What Drives Media
    Slant? Evidence From U.S. Daily Newspapers. Journal of
    the econometric society, 78(1), 35-71.
    Godbole, N., Srinivasaiah, M., & Skiena, S. (2007). Large-
    Scale Sentiment Analysis for News and Blogs. ICWSM,
    7(21), 219-222.
    Granziera, E., & Kozicki, S. (2015). House price dynamics:
    Fundamentals and expectations. Journal of Economic
    Dynamics and Control, 60, 152-165.
    Hanley, K. W., & Hoberg, G. (2010). The Information Content
    of IPO Prospectuses. The Review of Financial Studies,
    23(7), 2821-2864.
    Hong, H., & Stein, J. C. (2007). Disagreement and the Stock
    Market. Journal of Economic Perspectives, 21(2), 109-
    128.
    Hu, M., & Liu, B. (2004). Mining Opinion Features in
    Customer Reviews Proceedings of the 19th National
    Conference on Artificial Intelligence, 755-776.
    Hui, E. C. M., Dong, Z., Jia, S., & Lam, C. H. L. (2017).
    How does sentiment affect returns of urban housing?
    Habitat International, 64, 71-84.
    Keynes, J. M. (1936). The General Theory of Employment,
    Interest and Money. Palgrave Macmillan.
    Ku, L.-W., Lo, Y.-S., & Chen, H.-H. (2007). Using polarity
    scores of words for sentence-level opinion extraction.
    Paper presented at the Proceedings of NTCIR-6 workshop
    meeting, Tokyo, Japan.
    Lai, R. N., & Order, R. A. V. (2010). Momentum and House
    Price Growth in the United States: Anatomy of a Bubble.
    Real Estate Economics, 38(4), 753-773.
    Lambertini, L., Mendicino, C., & Punzi, M. T. (2013).
    Expectation-driven cycles in the housing market:
    Evidence from survey data. Journal of Financial
    Stability, 9(4), 518-529.
    Liu, B. (2012). Sentiment Analysis and Opinion Mining (Vol.
    5): Morgan & Claypool Publishers.
    Loughran, T., & Mcdonald, B. (2011). When Is a Liability
    Not a Liability? Textual Analysis, Dictionaries, and 10
    ‐Ks. The Journal of Finance, 66(1), 35-65.
    Loughran, T., & Mcdonald, B. (2014). Measuring Readability
    in Financial Disclosures. The Journal of Finance,
    69(4), 1643-1671.
    Marcato, G., & Nanda, A. (2016). Information Content and
    Forecasting Ability of Sentiment Indicators: Case of
    Real Estate Market. Journal of Real Estate Research,
    38(2), 165-203.
    Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment
    analysis algorithms and applications: A survey. Ain
    Shams Engineering Journal, 5(4), 1093-1113.
    Meen, G. P. (1990). The removal of mortgage market
    constraints and the implications for econometric
    modelling of UK house prices, Oxford Bulletin Economics
    and Statistics, 52 (1):1-23.
    Mikhed, V., & Zemčík, P. (2009). Do house prices reflect
    fundamentals? Aggregate and panel data evidence.
    Journal of Housing Economics, 18(2), 140-149.
    Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The
    evolution of sentiment analysis—A review of research
    topics, venues, and top cited papers. Computer Science
    Review, 27, 16-32.
    Peress, J. (2014). The Media and the Diffusion of
    Information in Financial Markets: Evidence from
    Newspaper Strikes. The Journal of Finance, 69(5).
    Ren, Y., & Yuan, Y. (2012). Why the Housing Sector Leads
    the Whole Economy: The Importance of Collateral
    Constraints and News Shocks. The Journal of Real Estate
    Finance and Economics, 48(2), 323-341.
    Scott, L. O. (1990). Do prices reflect market fundamentals
    in real estate markets? The Journal of Real Estate
    Finance and Economics, 3(1), 5-23.
    Shiller, R. J. (2000). Irrational Exuberance. Philosophy
    and Public Policy Quarterly, 20(1), 18-23.
    Shiller, R. J. (2005). Irrational Exuberance. Princeton:
    NJ: Princeton University Press.
    Shiller, R. J., & Akerlof, G. A. (2010). Animal Spirits.
    Princeton: NJ: Princeton University Press.
    Soo, C. K. (2018). Quantifying Sentiment with News Media
    across Local Housing Markets. The Review of Financial
    Studies, 31(10), 3689-3719.
    Sullivan, D. (2001). Document Warehousing and Text Mining:
    Techniques for Improving Business Operations,
    Marketing, and Sales: John Wiley & Sons, Inc. New York,
    NY, USA ©2001.
    Tan, A.-H. (1999). Text mining: Promises and challenges.
    Paper presented at the Proceedings south east Asia
    research computer confederation (SEARCC99), Singapore
    City, Singapore.
    Tetlock, P. C. (2007). Giving Content to Investor
    Sentiment: The Role of Media in the Stock Market. The
    Journal of Finance, 62(3).
    Tetlock, P. C., Saar‐Tsechansky, M., & Macskassy, S.
    (2008). More Than Words: Quantifying Language to
    Measure Firms' Fundamentals. The Journal of Finance,
    63(3), 1437-1467.
    Walker, C. B. (2014). Housing booms and media coverage.
    Applied Economics, 46(32), 3954-3967.

    中文參考文獻

    吳森田. (1994). 所得、貨幣與房價——近二十年台北地區的觀察. 住宅
    學報, 2, 49-65.
    李政儒, 游基鑫, & 陳信希. (2012). 廣義知網詞彙意見極性的預測.
    中文計算語言學期刊, 17(2), 21-36.
    李美杏, 陳威廷, & 彭建文. (2014). 亞洲城市房價基值與泡沫. 都市
    與計劃, 41(2), 169-198.
    林宜萱. (2013). 財經領域情緒辭典之建置與其有效性之驗證-以財經新
    聞為元件. (碩士), 臺灣大學會計學研究所.
    林秋瑾, 王健安, & 張金鶚. (1997). 房地產景氣與總體經濟景氣於時
    間上領先、同時、落後關係之探討. 國家科學委員會彙刊;人文及社
    會科學, 7(1), 35-56.
    張津挺. (2015). 中文財務情緒字典建構與其在財務新聞分析之應用.
    (碩士), 臺北市立大學資訊科學系.
    彭建文, & 張金鶚. (2000). 總體經濟對房地產景氣影響之研究. 國家
    科學委員會研究彙刊:人文及社會科學, 10(3), 330-343.
    廖慧玲. (2011). 貨幣供給、新台幣匯率對房價指數與股價報酬率關聯性
    之研究. (碩士在職專班), 國立臺北大學國際財務金融碩士在職專
    班.
    趙鵬, 趙志偉, & 卓景文. (2011). 一種情感詞語意加權的句子傾向性
    識別方法. 計算機工程與應用, 47(35), 161-163.
    蔡怡純, & 陳明吉. (2013). 房價之不對稱均衡調整:門檻誤差修正模
    型應用. 臺灣土地研究, 16(1), 37-58.
    鍾任明, 李維平, & 吳澤民. (2007). 運用文字探勘於日內股價漲跌趨
    勢預測之研究. 中華管理評論國際學報, 10(1).
    Description: 碩士
    國立政治大學
    財務管理學系
    106357018
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106357018
    Data Type: thesis
    DOI: 10.6814/NCCU201900185
    Appears in Collections:[財務管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    701801.pdf1666KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback