English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 90773/120835 (75%)
Visitors : 25092637      Online Users : 313
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/128850

    Title: 發展「主題分析即時回饋系統」促進非同步線上討論成效
    Developing a Topic Analysis Instant Feedback System to facilitate asynchronous online discussion performance
    Authors: 張文騫
    Chang, Wen-Chien
    Contributors: 陳志銘
    Chen, Chih-Ming
    Chang, Wen-Chien
    Keywords: 非同步線上討論
    Asynchronous online discussion
    Discussion performance
    Implicit guidance strategy
    Latent Dirichlet Allocation topic model
    Socio-scientific issues
    Technology acceptance
    Date: 2020
    Issue Date: 2020-03-02 11:11:27 (UTC+8)
    Abstract: 資訊時代下學習與科技越來越密不可分,而非同步線上討論為數位學習中常見的學習活動之一,過程中學習者透過合作方式參與學習,不受時間和空間限制的分享想法、提出問題和進行討論回饋,以達到知識分享及強化學習的目的。但是若缺乏適當有效促進討論的輔助機制,便可能產生討論內容偏離主題,討論內容過於狹隘且不夠深入等問題。因此,本研究設計「主題分析即時回饋系統(Topic Analysis Instant Feedback System, 以下簡稱TAIFS)」,希望透過將學習者合作學習討論的內容,即時轉換成主題與主題比率形式視覺化呈現,使學習者能即時掌握線上討論中全體討論狀況與異同觀點,進而有效提升討論成效。
    本研究採用準實驗研究法,隨機選取台北市某高中一年級兩班共61名學生為研究對象,其中一班31名學生被隨機分派為採用TAIFS輔助線上討論之實驗組,另一班30名學生則被分派為使用一般Moodle線上討論之控制組。兩組學習者進行「海岸地區利用」之社會性科學議題(socio-scientific issues, 以下簡稱SSI)線上討論,以探討兩組學習者在討論成效之複雜度與多觀點,以及科技接受度是否具有顯著的差異。此外,也以性別作為背景變項,探討不同性別學習者,在討論成效之複雜度與多觀點,以及科技接受度是否具有顯著的差異。
    In the information age, learning and technology are becoming more and more inseparable. Asynchronous online discussion is one of the common learning activities in digital learning. In the process, learners participate in learning through cooperative methods. Sharing ideas and asking questions without being limited by time and space, and give feedback to achieve the purpose of knowledge sharing and reinforcement learning. However, if there is no proper and effective assist mechanism to facilitate discussion, the discussion content may deviate from the topic and the discussion content is too narrow and not deep enough. Therefore, this research designed the "Topic Analysis Instant Feedback System (TAIFS)", hoping to convert the content of the collaborative learning discussions of learners into a visual representation of the topic and the topic ratio in real time, so that the learners can immediately grasp the overall discussion status, similarities opinions and differences opinions in discussions, and effectively improve the discussion performance.
    In this study, a quasi-experimental research method was used. A total of 61 students from two classes in a high school in Taipei City were randomly selected. One class of 31 students was randomly assigned to the experimental group using TAIFS to assist online discussion, and the other class of 30 students are assigned to control groups using general Moodle online discussions. Two groups of learners discussed socio-scientific issues (SSI) call "coastal area utilization" to investigate whether the complexity and perspectives of discussion performance, and the acceptance of technology between two groups of learners have significant difference or not. In addition, gender is used as a background variable to investigate whether the complexity and perspectives of discussion performance, and the acceptance of technology between different genders have significant difference.
    The results of the study found compared with the control group using the general Moodle online discussion group, the experimental group using TAIFS to assist online discussion was significantly better than the control group in overall discussion performance, sub-item complexity and perspectives. In addition, when TAIFS assisted discussion, whether it was female or male learners, there was no significant difference in the overall discussion performance, sub-item complexity and perspectives. Indicating regardless of gender, when TAIFS assisted the discussion of learners can effectively improve the discussion performance. However, compared with learners who didn’t use TAIFS, among learners who had used TAIFS, female learners were more effective than male learners in improving perspectives. In terms of technological acceptance, the two groups didn’t reach statistically significant differences, but both showed generally high technological acceptance. In addition, the qualitative data analysis of the interviewees showed that the experimental group of respondents who used TAIFS generally felt that the overall discussion of real-time topics, the proportion of group discussion topics, and the internal and external search function can effectively help learners to discuss issues from different perspectives.
    Finally, based on the research results, this study puts forward suggestions for optimizing the TAIFS system, optimizing the Moodle discussion area, and research directions that can be further explored in the future. On the whole, this study integrates technologies such as discussion learning, guidance strategies of discussion, natural language processing, and data visualization to provide an innovative and effective learning tool, TAIFS, that assists online discussion with technology to contribute to promote online discussion performance of digital learning.
    Reference: 潘淑滿(2003)。質性研究-理論與實務。新北市:心理出版社。
    Abdous, M., He, W., & Yen, C.-J. (2012). Using data mining for predicting relationships between online question theme and final grade. Journal of Educational Technology and Society, 15(3), 77-88. Retrieved from https://search.proquest.com/docview/1287025367?pq-origsite=gscholar
    Albe, V. (2008). When Scientific Knowledge, Daily Life Experience, Epistemological and Social Considerations Intersect: Students’ Argumentation in Group Discussions on a Socio-scientific Issue. Research in Science Education, 38, 67–90. doi:10.1007/s11165-007-9040-2
    Atapattu, T., Falkner, K., & Tarmazdi, H. (2016). Topic-wise classification of MOOC discussions: A Visual Analytics Approach. Proceedings of the 9th International Conference on Educational Data Mining, 276-281. Retrieved from http://www.educationaldatamining.org/EDM2016/proceedings/paper_109.pdf
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022. doi:10.1016/j.linged.2018.05.003
    Blei, D. M., Ng, A. Y., Jordan, M. I., Griffiths, T. L., & Tenenbaum, J. B.(2004). Hierarchical Topic Models and the Nested Chinese Restaurant Process. Proceedings of the 16th International Conference on Neural Information Processing Systems, 17-24. Retrieved from https://papers.nips.cc/paper/2466-hierarchical-topic-models-and-the-nested-chinese-restaurant-process.pdf
    Blumenfeld, P. C., Kempler, T. M., & Krajcik, J. S. (2006). Motivation and cognitive engagement in learning environments. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 475-488). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511816833.029
    Bodemer, D. (2011). Tacit guidance for collaborative multimedia learning. Computers in Human Behavior, 27(3), 1079-1086. doi:10.1016/j.chb.2010.05.016
    Bostock, S., & Lizhi, W. (2005). Gender in students' online discussions. Innovations in Education and Teaching International, 42(1), 73-86. doi: 10.1080/14703290500048978
    Chau, P. Y. K. (1996). An empirical assessment of a modified technology acceptance model. Journal of Management Information Systems, 13(2), 185-204. doi:10.1080/07421222.1996.11518128
    Cole, J., & Foster, H. (2007). Using Moodle: Teaching with the Popular Open Source Course Management System. (2nd ed.). Sebastopol, CA: O’Reilly.
    Curtis, D. D., & Lawson, M. J. (2001). Exploring collaborative online learning. Journal of Asynchronous Learning Networks, 5(1), 21-34. Retrieved from http://en.wikieducator.org/images/6/60/ALN_Collaborative_Learning.pdf
    Davis, F, D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982
    Dehler, J., Bodemer, D., Buder, J., & Hesse, F. W. (2011). Guiding knowledge communication in CSCL via group knowledge awareness. Computers in Human Behavior, 27(3), 1068-1078. doi:10.1016/j.chb.2010.05.018
    Delahunty, J. (2018). Connecting to learn, learning to connect: Thinking together in asynchronous forum discussion. Linguistics and Education, 46, 12-22. doi:10.1016/j.linged.2018.05.003
    Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining ‘Gamification’. Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, 9–15. doi:10.1145/2181037.2181040
    Dillenbourg, P., & Betrancourt, M. (2006). Collaboration load. In J. Elen & R. E. Clark (Eds.), Handling complexity in learning environments: Research and theory (pp. 142–163). Amsterdam, NL: Elsevier. Retrieved from https://telearn.archives-ouvertes.fr/hal-00190700
    Dillenbourg, P., & Jermann, P. (2007). Designing integrative scripts. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting Computer-Supported Collaborative Learning (pp. 275–301). Springer US. Retrieved from https://link.springer.com/chapter/10.1007/978-0-387-36949-5_16
    Ding, L. (2019). Applying gamifications to asynchronous online discussions: A mixed methods study. Computers in Human Behavior, 91, 1–11. doi:10.1016/j.chb.2018.09.022
    Ding, L., Kim, C., & Orey, M. (2017). Studies of student engagement in gamified online discussions. Computers & Education, 115, 126–142. doi:10.1016/j.compedu.2017.06.016
    Duncan, M. J., Smith, M., & Cook, K. (2013). Implementing online problem based learning (PBL) in postgraduates new to both online learning and PBL: An example from strength and conditioning. Journal of Hospitality, Leisure, Sport & Tourism Education, 12(1), 79–84. doi: 10.1016/j.jhlste.2012.11.004
    Eggert, S., & Bogeholz, S. (2009). Students' use of decision‐making strategies with regard to socioscientific issues: An application of the Rasch partial credit model. Science Education, 94(2), 230-258. doi:10.1002/sce.20358
    Erkens, M., & Bodemer, D. (2019). Improving collaborative learning: Guiding knowledge exchange through the provision of information about learning partners and learning contents. Computers and Education, 128, 452-472. doi:10.1016/j.compedu.2018.10.009
    Erkens, M., Bodemer, D., & Hoppe, H. U. (2016). Improving collaborative learning in the classroom: Text mining based grouping and representing. International Journal of Computer-Supported Collaborative Learning, 11(4), 387-415. doi:10.1007/s11412-016-9243-5
    Ezen-Can, A., Boyer, K. E., Kellogg, S., & Booth, S. (2015). Unsupervised modeling for understanding MOOC discussion forums: A learning analytics approach. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 146–150. doi:10.1145/2723576.2723589
    Gao, F., Wang, C., & Sun, Y. (2009). A new model of productive online discussion and its implications for research and instruction. Journal of Educational Technology Development and Exchange (JETDE), 2(1), 65–78. doi:10.18785/jetde.0201.05
    Gao, F., Zhang, T., & Franklin, T. (2013). Designing asynchronous online discussion environments: Recent progress and possible future directions. British Journal of Educational Technology, 44(3), 469-483. doi:10.1111/j.1467-8535.2012.01330.x
    Goda, K., & Mine, T. (2011). Analysis of students’ learning activities through quantifying Time-series comments. In A. König, A. Dengel, K. Hinkelmann, K. Kise, R. J. Howlett, & L. C. Jain (Eds.), Knowlege-Based and Intelligent Information and Engineering Systems (pp. 154-164). Springer Berlin Heidelberg. doi:10.1007/978-3-642-23863-5_16
    Gross, T., Stary, C., & Totter, A. (2005). User-centered awareness in computer-supported cooperative work-systems: Structured embedding of findings from social sciences. International Journal of Human–Computer Interaction, 18(3), 323-360. doi:10.1207/s15327590ijhc1803_5
    Hanegan, N. L., Price, L., & Peterson, J. (2008). Disconnections between teacher expectations and student confidence in bioethics. Science and Education, 17(8), 921-940. doi:10.1007/s11191-007-9122-6
    Hara, N., Bonk, C. J., & Angeli, C. (2000). Content analysis of online discussion in an applied educational psychology course. Instructional Science, 28(2), 115–152. doi:10.1023/A:1003764722829
    Havre, S., Hetzler, E., Whitney, P., & Nowell, L. (2002). ThemeRiver: visualizing thematic changes in large document collections. IEEE transactions on visualization and computer graphics, 8(1), 9–20. doi: 10.1109/2945.981848
    Hawkes, M. (2006). Linguistic discourse variables as indicators of reflective online interaction. American Journal of Distance Education, 20(4), 231–244. doi:10.1207/s15389286ajde2004_4
    He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90-102. doi:10.1016/j.chb.2012.07.020
    Heimbuch, S., & Bodemer, D. (2017). Controversy awareness on evidence-led discussions as guidance for students in wiki-based learning. The Internet and Higher Education, 33, 1-14. doi:10.1016/j.iheduc.2016.12.001
    Hew, K. F., Cheung, W. S., & Ng, C. S. L. (2010). Student contribution in asynchronous online discussion: A review of the research and empirical exploration. Instructional Science, 38(6), 571-606. doi:10.1007/s11251-008-9087-0
    Hewitt, J. (2001). Beyond threaded discourse. International Journal of Educational Telecommunications, 38(3), 207–221. Retrieved from https://tspace.library.utoronto.ca/handle/1807/26522
    Hewitt, J. (2003). How habitual online practices affect the development of asynchronous discussion threads. Journal of Educational Computing Research, 28(1), 31–45. doi:10.2190/PMG8-A05J-CUH1-DK14
    Hoffman, M. D., Bach, F., & Blei, D. M. (2010). Online learning for Latent Dirichlet Allocation. Proceedings of the 23rd International Conference on Neural Information Processing Systems 1, 856-864. Retrieved from http://papers.nips.cc/paper/3902-online-learning-for-latent-dirichlet-allocation.pdf
    Hsiao, I.-H., & Awasthi, P. (2015). Topic facet modeling: semantic visual analytics for online discussion forums. Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, 231-235. doi:10.1145/2723576.2723613
    Hwang, G.-J., Yang, L.-H., & Wang, S.-Y. (2013). A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Computers and Education, 69(C), 121–130. doi:10.1016/j.compedu.2013.07.008
    Janssen, J., & Bodemer, D. (2013). Coordinated computer-supported collaborative learning: Awareness and awareness tools. Educational Psychologist, 48(1), 40-55. doi:10.1080/00461520.2012.749153
    Janssen, J., Erkens, G., Kirschner, P. A., & Kanselaar, G. (2010). Effects of representational guidance during computer-supported collaborative learning. Instructional Science, 38(1), 59-88. doi:10.1007/s11251-008-9078-1
    Jeong, A., & Frazier, S. (2008). How day of posting affects level of critical discourse in asynchronous discussions and computer‐supported collaborative argumentation. British Journal of Educational Technology, 39(5), 875–887. doi:10.1111/j.1467-8535.2007.00789.x
    Jia, H., & Liu, X. (2013). Scientific referential metadata creation with information retrieval and labeled topic modeling. Proceeding of iConference 2013, 274-288. doi:10.9776/13192
    Knowlton, D. S. (2001). Promoting durable knowledge construction through online discussion. Mid‐South Instructional Technology Conference. Retrieved from https://eric.ed.gov/?id=ED463724
    Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hämäläinen, R., & Fischer, F. (2007). Specifying computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 2(2-3), 211–224. doi:10.1007/s11412-007-9014-4
    Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291-310. doi:10.1002/sce.1011
    Lambiase, J. J. (2010). Hanging by a thread: Topic development and death in an online discussion of breaking news. Language at Internet, 7(9). Retrieved from http://www.languageatinternet.org/articles/2010/2814
    Liu, S. -Y., Lin, C. -S., & Tsai, C. -C. (2011). College students' scientific epistemological views and thinking patterns in socioscientific decision making. Science Education, 95(3), 497-517. doi:10.1002/sce.20422
    Lyons, T., & Evans, M. (2013). Blended learning to increase student satisfaction: An exploratory study. Internet Reference Services Quarterly, 18(1), 43–53. doi:10.1080/10875301.2013.800626
    Marra, R. M., Moore, J. L., & Klimczak, A. K. (2004). Content analysis of online discussion forums: A comparative analysis of protocols. Educational Technology Research and Development, 52(2), 23–40. doi:10.1007/BF02504837
    Maskeri, G., Sarkar, S., & Heafield, K. (2008). Mining Business Topics in Source Code using Latent Dirichlet Allocation. Proceedings of the 1st India Software Engineering Conference, 113-120. doi: 10.1145/1342211.1342234
    Minami, T., & Ohura, Y. (2013). Lecture data analysis towards to know how the students’ attitudes affect to their evaluations. Proceedings of the 8th International Conference on Information Technology and Applications, 164-169. Retrieved from http://www.icita.org/2013/papers/jp-minami.pdf
    Minami, T., & Ohura, Y. (2015). How student’s attitude influences on learning achievement? An analysis of attitude-representing words appearing in looking-back evaluation texts. International Journal of Database Theory and Application, 8(2), 129-144. doi:10.14257/ijdta.2015.8.2.13
    Ming, N., & Baumer, E. (2011). Using Text Mining to Characterize Online Discussion Facilitation. Journal of Asynchronous Learning Networks, 15(2), 71-109. Retrieved from https://files.eric.ed.gov/fulltext/EJ935578.pdf
    Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576. doi:10.1080/095006999290570
    Ory, J.C (1997). Gender Similarity in the Use of and Attitudes about ALN in a University Setting. Journal of Asynchronous Learning Networks, 1(1), 39-51. doi: 10.24059/olj.v1i1.1942
    Osborne, D. M., Byrne, J. H., Massey, D. L., & Johnston, A. N. B. (2018). Use of online asynchronous discussion boards to engage students, enhance critical thinking, and foster staff-student/student-student collaboration: A mixed method study. Nurse Education Today, 70, 40-46. doi:10.1016/j.nedt.2018.08.014
    Palfrey, J., & Gasser, U. (2008). Born digital: Understanding the first generation of digital natives. New York: Basic Books.
    Pearson, J. (2006). Investigating ICT using problem-based learning in face-to-face and online learning environments. Computers & Education, 47(1), 56–73. doi: 10.1016/j.compedu.2004.09.001
    Peng, X., Liu, S., Liu, Z., Gan, W., & Sun, J. (2016). Mining learners’ topic interests in course reviews based on like-lda model. International journal of innovative computing, information & control, 12(6), 2099-2110. Retrieved from https://www.researchgate.net/profile/Zhi_Liu43/publication/310830465_Mining_Learners'_Topic_Interests_in_Course_Reviews_based_on_Like-LDA_Model/links/5838ea8a08ae3d91723de53e.pdf
    Ryan, R. M., & Deci, E. L. (2006). Self-regulation and the problem of human autonomy: Does psychology need choice, Self-determination, and will? Journal of Personality, 74(6), 1557-1586. doi:10.1111/j.1467-6494.2006.00420.x
    Sadler, T. D. (2004). Informal Reasoning Regarding Socioscientific Issues A Critical Review of Research. Journal of Research in Science Teaching, 41(5), 513–536. doi:10.1002/tea.20009
    Sadler, T., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391. doi:10.1007/s11165-006-9030-9
    Sánchez, R., A., & Hueros, A., D. (2010). Motivational factors that influence the acceptance of Moodle using TAM. Computers in Human Behavior, 26(6), 1632-1640. doi:10.1016/j.chb.2010.06.011
    Sangin, M., Molinari, G., Nüssli, M.-A., & Dillenbourg, P. (2011). Facilitating peer knowledge modeling: Effects of a knowledge awareness tool on collaborative learning outcomes and processes. Computers in Human Behavior, 27(3), 1059-1067. doi:10.1016/j.chb.2010.05.032
    Smits, P. B., de Buisonjé, C. D., Verbeek, J. H., van Dijk, F. J., Metz, J. C., & ten Cate, O. J. (2003). Problem-based learning versus lecture-based learning in postgraduate medical education. Scandinavian Journal of Work, Environment & Health, 29(4), 280–287. doi:10.5271/sjweh.732
    Sun, G., & Bin, S. (2018). Topic interaction model based on local community detection in MOOC discussion forums and its teaching application. Educational Sciences: Theory and Practice, 18(6), 2922-2931. doi:10.12738/estp.2018.6.191
    Suthers, D. D. (2001). Towards a systematic study of representational guidance for collaborative learning discourse. Journal of Universal Computer Science, 7(3), 254–277. Retrieved from https://pdfs.semanticscholar.org/f493/b38c1c90e329ff9ff9063183735a71aa109e.pdf
    Suthers, D. D., & Hundhausen, C. D. (2003). An experimental study of the effects of representational guidance on collaborative learning processes. Journal of the Learning Sciences, 12(2), 183-218. doi:10.1207/S15327809JLS1202_2
    Suthers, D. D., Vatrapu, R., Medina, R., Joseph, S., & Dwyer, N. (2008). Beyond threaded discussion: Representational guidance in asynchronous collaborative learning environments. Computers & Education, 50(4), 1103-1127. doi:10.1016/j.compedu.2006.10.007
    Tsai, C. Y. (2018). The effect of online argumentation of socio-scientific issues on students' scientific competencies and sustainability attitudes. Computers and Education, 116, 14-27. doi:10.1016/j.compedu.2017.08.009
    Tsai, M. J., Liang, J. C., Hou, H. T., & Tsai, C. C. (2015). Males are not as active as females in online discussion: Gender differences in face-to-face and online discussion strategies. Australasian Journal of Educational Technology, 31(3), 263-277. doi:10.14742/ajet.1557
    Wang, Q., & Woo, H. L. (2007). Comparing asynchronous online discussions and Face-to-face discussions in a classroom setting. British Journal of Educational Technology, 38(2), 272–286. doi:10.1111/j.1467-8535.2006.00621.x
    Wang, W., Feng, Y., & Dai, W. (2018). Topic analysis of online reviews for two competitive products using Latent Dirichlet Allocation. Electronic Commerce Research and Applications, 29, 142–156. doi:10.1016/j.elerap.2018.04.003
    Wei, X., & Croft, W. (2006). LDA-based document models for ad-hoc retrieval. Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, 178–185. doi:10.1145/1148170.1148204
    Weinberger, A., Stegmann, K., Fischer, F., & Mandl, H. (2007). Scripting argumentative knowledge construction in computer-supported learning environments. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives (pp. 191-211). Boston, MA: Springer US. doi:10.1007/978-0-387-36949-5_12
    Wolfensberger, B., Piniel, J., Canella, C., & Kyburz-Graber, R. (2010). The challenge of involvement in reflective teaching: Three case studies from a teacher education project on conducting classroom discussions on socio-scientific issues. Teaching and Teacher Education, 26(3), 714-721. doi:10.1016/j.tate.2009.10.007
    Wu, D. & Hiltz, S. R. (2004). Predicting learning from asynchronous online discussions. Journal of Asynchronous Learning Network. 8(2), 139- 152. doi: 10.1142/S1609945104000115
    Wu, P., Yu, S., & Wang, D. (2018). Using a learner-topic model for mining learner interests in open learning environments. Educational Technology & Society, 21(2), 192-204. Retrieved from https://www.jstor.org/stable/26388396?seq=1#page_scan_tab_contents
    Xie, K., & Ke, F. (2011). The role of students' motivation in peer‐moderated asynchronous online discussions. British Journal of Educational Technology, 42(6), 916-930. doi:10.1016/j.linged.2018.05.003
    Yu, K., Zhang, B., Zhu, H., Cao, H., & Tian, J. (2012). Towards personalized context-aware recommendation by mining context logs through topic models. In P.-N. Tan, S. Chawla, C. K. Ho, & J. Bailey (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 431-443). Springer Berlin Heidelberg. Retrieved from https://link.springer.com/chapter/10.1007/978-3-642-30217-6_36
    Zhan, Z., Fong, P., S., W., Mei, H., & Liang, T. (2015). Effects of gender grouping on students’ group performance, individual achievements and attitudes in computer-supported collaborative learning. Computers in Human Behavior, 48, 587-596. doi:10.1016/j.chb.2015.02.038
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106155003
    Data Type: thesis
    DOI: 10.6814/NCCU202000307
    Appears in Collections:[圖書資訊與檔案學研究所] 學位論文

    Files in This Item:

    File SizeFormat
    500301.pdf2605KbAdobe PDF0View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback