English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92429/122733 (75%)
Visitors : 26449512      Online Users : 123
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/128926

    Title: 估計總體經濟動態效果的三篇論文
    Essays in Estimation of Dynamic Effects in Macroeconomics
    Authors: 蕭宇翔
    Hsiao, Yu-Hsiang
    Contributors: 林馨怡
    Lin, Hsin-Yi
    Hsiao, Yu-Hsiang
    Keywords: 動態影響
    Dynamic effects
    Impulse response
    Propensity score
    Monetary policy
    Macroprudential policy
    Local projections
    Date: 2020
    Issue Date: 2020-03-02 11:26:11 (UTC+8)
    Abstract: 本論文包含三個關於估計總體經濟動態效果的章節。第一章延伸Angrist et al. (2018) 提出的半母數 (semiparametric) 時間序列估計方法,應用於估計政策轉變對經濟結果分配特定分量的影響效果,定義分量政策效果 (quantile policy effects, QPE) 為在政策施行後的各期間,兩個潛在結果 (potential outcomes) 在特定分量的差距。應用QPE評估美國於1948至1993年實施之總體審慎政策效果,研究發現總體審慎政策對銀行信用成長存在異質的 (heterogeneous) 影響效果。

    第二章在動態追蹤資料的架構下,應用局部投影 (local projections) 方法估計制度轉換的動態影響,研究發現Nickell偏誤會影響局部投影的衝擊反應 (impulse response) 估計值,若將追蹤資料拆分成兩個不相重疊的樣本,再分別估計一階差分的局部投影模型,可大幅降低衝擊反應估計值的偏誤。應用上述方法進行實證研究發現,若國家自非民主政體轉變為民主政體,在20年後平均約使人均GDP提高24% - 25%。

    第三章檢視在景氣循環的不同時點,臺灣貨幣政策對實體經濟的影響效果是否有所不同。應用Romer and Romer (2004) 的認定方法,建構新的臺灣貨幣政策衝擊的時間序列,衝擊反應的估計結果顯示,據此方法認定之貨幣政策衝擊對實質產出、失業率、實質銀行放款有較大的影響效果;研究進而發現,在景氣熱絡時期,貨幣政策對實質產出、失業率、實質銀行放款的影響效果較景氣低迷時大。
    This dissertation consists of three independent chapters on estimating the dynamic effects in macroeconomics. In the first chapter, I extend Angrist's et al. (2018) flexible semiparametric time series methods for evaluating the quantile responses of outcomes to a policy change. The differences between certain quantiles of the potential outcomes at different horizons are defined as quantile policy effects (QPE). I apply the QPE estimator to examine the effectiveness of cyclical macroprudential policies on bank credit growth in the U.S. from 1948 to 1993. The estimated results of QPE show that the responses of bank credit growth to macroprudential actions at different quantiles are heterogeneous.

    In the second chapter, I employ local projections method to estimate the effect of regime transitions in the dynamic panel data framework. I show that splitting the panel data into two non-overlapped subsamples and respectively estimating the first-difference local projections estimation can reduce the bias in the regime effect estimates contaminated by the Nickell bias and capture asymmetric and nonlinear effects of regime transitions. Applying this approach, I find that a transition to democracy causes the GDP per capita to increase by 24% - 25% over 20 years.

    In the third chapter, I investigate the asymmetric impact of monetary policy over the course of Taiwan’s business cycle. Employing Romer and Romer’s (2004) identification approach, I construct a new measure of the monetary policy shock for Taiwan’s economy. The finding suggests find that the impact of monetary policy estimated by the new measure is larger and faster than short-term restrictions approach. Moreover, the impacts of monetary policy on real output, employment and real bank loans are less effective in recessions than in expansions.
    Reference: Acemoglu, D., S. Naidu,, P. Restrepo, and J. A. Robinson (2019).
    Democracy Does Cause Growth.
    Journal of Political Economy, 127(1), p.47--100.

    Aikman, D., O. Bush, and A. M. Taylor (2016).
    Monetary Versus Macroprudential Policies: Causal Impacts of Interest Rates and Credit Controls in the Era of the UK Radcliffe Report.
    NBER Working Paper, No. 22380.

    Akinci, O., and J. Olmstead-Rumsey (2017).
    How Effective are Macroprudential Policies? An Empirical Investigation.
    Journal of Financial Intermediation, 33, p.33--57.

    Alesina, A., A. Devleeschauwer, W. Easterly, S. Kurlat, and R. Wacziarg (2002).
    Journal of Economic Growth, 8(2), p.155--194.

    Alesina, A., and E. L. Ferrara (2005).
    Ethnic Diversity and Economic Performance.
    Journal of Economic Literature, 43(3), p.762--800.

    Angrist, J. D., O. Jorda, and G. M. Kuersteiner (2018).
    Semiparametric Estimates of Monetary Policy Effects: String Theory Revisited.
    Journal of Business & Economics Statistics, 36(3), p.371--387.

    Angrist, J. D., and G. M. Kuersteiner (2011).
    Causal Effects of Monetary Shocks: Semiparametric Conditional Independence Tests with a Multinomial Propensity Score.
    Review of Economics and Statistics, 93(3), p.725--747.

    Athey, S. (2019).
    The Impact of Machine Learning on Economics.
    The Economics of Artificial Intelligence: An Agenda , Agrawal, A., J. Gans, and A. Goldfarb, editors, p.507--547.

    Auerbach, A., and Y. Gorodnichenko (2012).
    Measuring the Output Responses to Fiscal Policy.
    American Economic Journal: Economic Policy, 4(2), p.1--27.

    Auerbach, A., and Y. Gorodnichenko (2013).
    Fiscal Multipliers in Recession and Expansion.
    Fiscal Policy After the Financial Crisis,
    eds. Alberto Alesina and Francesco Giavazzi,
    University of Chicago Press.

    Barnichon, R., and C. Brownlees (2019).
    Impulse Response Estimation by Smooth Local Projections.
    Review of Economics and Statistics, 101(3), p.522--530.

    Barnichon, R., and C. Matthes (2018).
    Functional Approximation of Impulse Responses.
    Journal of Monetary Economics, 99, p.41--55.

    Barth, M. J., and V. A. Ramey (2001).
    The Cost Channel of Monetary Transmission.
    NBER Macroeconomics Annual, 16, p.199--240.

    Barro, R. J. (1996).
    Democracy and Growth.
    Journal of Economic Growth, 1(1), p.1--27.

    Berger, D., and J. Vavra (2015).
    Consumption Dynamics During Recessions.
    Econometrica, 83(1), p.101--154.

    Bernanke, B. S., J. Boivin, and P. Eliasz (2005).
    Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach.
    Quarterly Journal of Economics, 120(1), p.387--422.

    Besley, T., and M. Kudamatsu (2006).
    Health and Democracy.
    American Economic Review, 96(2), p.313--318.

    Bloom, N. (2009).
    The Impact of Uncertainty Shocks.
    Econometrica, 77(3), 623--685.

    Bloom, N., M. Floetotto, N. Jaimovich, I. Saporta-Eksten, and S. J. Terry (2018).
    Really Uncertain Business Cycles.
    Econometrica, 86(3), p.1031--1065.

    Bunn, P., J. L. Roux, K. Reinold, and P. Surico (2018).
    The Consumption Response to Positive and Negative Income Shocks.
    Journal of Monetary Economics, 96, p.1--15.

    Bruno, V., I. Shim, and H. S. Shin (2017).
    Comparative Assessment of Macroprudential Policies.
    Journal of Financial Stability, 28, p.183--202.

    Caggiano, G., E. Castelnuovo, and G. Nodari (2017).
    Uncertainly and Monetary Policy in Good and Bad Times.
    CESifo Working Paper No. 6630.

    Caglayan, M., O. K. Kocaalan, and K. Mouratidis (2017).
    Financial Depth and the Asymmetric Impact of Monetary Policy.
    Oxford Bulletin of Economics and Statistics, 79(6), p.1195--1218.

    Cattaneo, M. D. (2010).
    Efficient Semiparametric Estimation of Multi-valued Treatment Effects under Ignorability.
    Journal of Econometrics, 155, p.138--154.

    Cerra, V., and S. C. Saxena (2008).
    Growth Dynamics: The Myth of Economic Recovery.
    American Economic Review, 98(1), p.439--457.

    Cerutti, E., S. Claessens, and L. Laevenc (2017).
    The Use and Effectiveness of Macroprudential Policies: New Evidence.
    Journal of Financial Stability, 28, p.203--224.

    Cervellati, M., and U. Sunde (2014).
    Civil Conflict, Democratization, and Growth: Violent Democratization as Critical Juncture.
    Scandinavian Journal of Economics, 116(2), p.482--505.

    Chavleishvili, S., and S. Manganelli (2017).
    Quantile Impulse Response Functions.
    Working Paper.

    Cizel, J., J. Frost, A. Houben, and P. Wierts (2016).
    Effective Macroprudential Policy: Cross-Sector Substitution from Price and Quantity Measures.
    IMF Working Paper, WP/16/94.

    Claessens, S., S. R. Ghosh, and R. Mihet (2013).
    Macro-prudential Policies to Mitigate Financial System Vulnerabilities.
    Journal of International Money and Finance, 39, p.153--185.

    Cloyne, J., and P. Hurtgen (2016).
    The Macroeconomic Effects of Monetary Policy: A New Measure for the United Kingdom.
    American Economic Journal: Macroeconomics, 8(4), p.75--102.

    Collier, P. (2000).
    Ethnicity, Politics and Economic Performance.
    Economics and Politics, 12(3), p.225--245.

    Collier, P. (2008).
    The Bottom Billion.
    Oxford University Press 2008.

    Deacon, R. T. (2009).
    Public Good Provision under Dictatorship and Democracy.
    Public Choice, 139(1--2), p.241--262.

    Desmet, K., I. Ortnuo-Ortin, and R. Wacziarg (2012).
    The Political Economy of Linguistic Cleavages.
    Journal of Development Economics, 97(2), p.322--338.

    Donald, S. G., and Y.-C., Hsu (2014).
    Estimation and Inference for Distribution Functions and Quantile Functions in Treatment Effect Models.
    Journal of Econometrics, 178, p.383--397.

    Elliott, D. J., G. Feldberg, and A. Lehnert (2013).
    The History of Cyclical Macroprudential Policy in the United States.
    FEDS Working Paper, 2013-29.

    Estrella, A., (2015).
    The Price Puzzle and VAR Identification.
    Macroeconomic Dynamics, 19, p.1880--1887.

    Firpo, S., (2007).
    Efficient Semiparametric Estimation of Quantile Treatment Effects.
    Econometrica, 75(1), p.259--276.

    Forbes, K. J., and M. W. Klein (2015).
    Pick Your Poison: The Choices and Consequences of Policy Responses to Crises.
    IMF Economic Review, 63 (1), p.197--237.

    Forbes, K. J., M. Fratzscher, and R. Straub (2015).
    Capital-flow Management Measures: What are They Good For?
    Journal of International Economics, 96 (1), p.76--97.

    Gaiotti, E., and A. Secchi (2006).
    Is There a Cost Channel of Monetary Policy Transmission? An Investigation into the Pricing Behavior of 2,000 Frims.
    Journal of Money, Credit and Banking, 38(8), p.2013--2037.

    Garcia R., and H. Schaller (2002).
    Are the Effects of Monetary Policy Asymmetric?
    Economic Inquiry, 40(1), p.102--119.

    Gerring, J., P. Bond, W. Barndt, and C. Moreno (2005).
    Democracy and Growth: A Historical Perspective.
    World Politics, 57(3), p.323--364.

    Hamilton, J. D., (2018).
    Why You Should Never Use the Hodrick-Prescott Filter.
    Review of Economics and Statistics, 100(5), p.831--843.

    Hansen, P. R., (2000).
    Sample Splitting and Threshold Estimation.
    Econometrica, 68(3), p.575--603.

    Helliwell, J. F. (1994).
    Empirical Linkages Between Democracy and Economic Growth.
    British Journal of Political Science, 24 (2), p.225--248.

    Hirano, K., G. W. Imbens, and R. Ridder (2003).
    Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score.
    Econometrica, 71(4), p.1161--1189.

    Imai, K., and D. A. V. Dyk (2004).
    Causal Inference with General Treatment Regimes: Generalizing the Propensity Score.
    Journal of the American Statistical Association, 99(467), 854--866.

    Imbens, G. W., (2000).
    The Role of the Propensity Score in Estimating Dose-Response Functions.
    Biometrika, 87(3), p.706--710.

    Imbens, G. W., (2004).
    Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review.
    Review of Economics and Statistics, 86(1), p.4--29.

    Jimenez, G., S. Ongena, J. L. Peydro, and J. Saurina (2017).
    Macroprudential Policy, Countercyclical Bank Capital Buffers, and Credit Supply: Evidence from the Spanish Dynamic Provisioning Experiments.
    Journal of Political Economy, 125 (6), p.2126--2177.

    Jorda, O., (2005).
    Estimation and Inference of Impulse Responses by Local Projections.
    American Economic Review, 95(1), p.161--182.

    Jorda, O., M. Schularick, and A. M. Taylor (2013).
    When Credit Bites Back.
    Journal of Money, Credit and Banking, 45(2), p.3--28.

    Jorda, O., M. Schularick, and A. M. Taylor (2015).
    Betting the House,
    Journal of International Economics, 96, p.2--18.

    Jorda, O., M. Schularick, and A. M. Taylor (2016).
    The Great Mortgaging: Housing Finance, Crises and Business Cycles.
    Economic Policy, 31(85), p.107--152.

    Jorda, O., M. Schularick, and A. M.Taylor (2019).
    The Effects of Quasi-Random Monetary Experiments.
    Journal of Monetary Economics, forthcoming.

    Jorda, O., and A. M. Taylor (2016).
    The Time for Austerity: Estimating the Average Treatment Effect of Fiscal Policy.
    Economic Journal, 126, p.219--255.

    Kuttner, K., and I. Shim (2013).
    Can Non-interest Rate Policies Stabilise Housing Markets? Evidence from a Panel of 57 Economies.
    BIS Working Paper 433.

    Lee, D. J., and T. H. Kim (2017).
    Impulse Response Analysis in Conditional Quantile Models and an Application to Monetary Policy.
    Working Paper.

    Lin, H., and Y. Hsiao (2019).
    Democracy and Economic Growth: A Reassessment.
    Taiwan Economic Review, Forthcoming.

    Lo, M. C. and J. Piger (2005).
    Is the Response of Output to Monetary Policy Asymmetric? Evidence from a Regime-Switching Coefficients Model.
    Journal of Money, Credit and Banking, 37(5), p.865--886.

    Maddala, G. S., (1971).
    The Use of Variance Components Models in Pooling Cross Section and Time Series Data.
    Econometrica, 39(2), p.341--358.

    McDonald, C., (2015).
    When is Macroprudential Policy Effective?
    BIS Working Papers, No 496.

    Mian, A., and A. Sufi (2009).
    The Consequences of Mortgage Credit Expansion: Evidence from the U. S. Mortgage Default Crisis.
    Quarterly Journal of Economics, 124(4), p.1449--1496.

    Monnet, E., (2014).
    Monetary Policy without Interest Rates: Evidence from France's Golden Age (1948 to 1973) Using a Narrative Approach.
    American Economic Journal: Macroeconomics, 6 (4), p.137--169.

    Morgan, D. P., (1993).
    Asymmetric Effects of Monetary Policy.
    Federal Reserve Bank of Kansas City Economic Review , Second Quarter, 78(2), p.22--33.

    Mumtaz, H., and P. Surico (2015).
    The Transmission Mechanism in Good and Bad Times.
    International Economic Review, 56(4), p.1237--1259.

    Newey, W. K., and K. D. West (1994).
    Automatic Lag Selection in Covariance Matrix Estimation.
    Review of Economic Studies, 61, p.631--654.

    Nickell, S., (1981).
    Biases in Dynamic Models with Fixed Effects.
    Econometrica, 49(6), p.1417--1426.

    Olson, M., (1993).
    Dictatorship, Democracy, and Development.
    American Political Science Review, 87(3), p.567--576.

    Papaioannou, E., and G. Siourounis (2008).
    Democratisation and Growth.
    Economic Journal, 118(532), p.1520--1551.

    Persson, T., and G., Tabellini (2008).
    The Growth Effect of Democracy: Is It Heterogenous and How Can It Be Estimated?
    in Helpman, E. (ed.), Institutions and Economic Performance, Harvard University Press.

    Peersman, G., and F. Smets (2005).
    The Industry Effects of Monetary Policy in the EURO Area.
    Economic Journal, 115(April), p.319-342.

    Plagborg-Moller, M., and C. K. Wolf (2019).
    Local Projections and VARs Estimate the Same Impulse Responses.
    Working paper.

    Ramey, V. A., (2016).
    Macroeconomic Shocks and Their Propagation.
    in the Handbook of Macroeconomics ,
    eds. John B. Taylor and Harald Uhlig,
    Amsterdam: Elsevier. Vol. 2, p.71--162.

    Ramey, V. A., and S. Zubairy (2018).
    Government Spending Multipliers in Good Times and in Bad: Evidence from U.S. Historical Data.
    Journal of Political Economy, 126(2), p.850--901.

    Ravenna, F., and C. E. Walsh (2006).
    Optimal Monetary Policy with the Cost Channel.
    Journal of Monetary Economics, 53(2), p.1999--1216.

    Rodrik, D., (2000).
    Participatory Politics, Social Cooperation, and Economic Stability.
    American Economic Review, Papers and Proceedings , 90(2), p.140--144.

    Rodrik, D., and R. Wacziarg (2005).
    Do Democratic Transitions Produce Bad Economic Outcomes?
    American Economic Review, Papers and Proceedings . 95 (2), p.50--55.

    Romer, C. D., and D. H. Romer (2004).
    A New Measure of Monetary Policy Shocks: Derivation and Implications.
    American Economic Review, 94(4), p.1055--1084.

    Rosenbaum, P., and D. Rubin (1983).
    The Central Role of the Propensity Score in Observational Studies for Causal Effects.
    Biometrika, 70, p.41--55.

    Santoro, E., I. Petrella, D. Pfajfar, and E. Gaffeo (2014).
    Loss Aversion and the Asymmetric Transmission of Monetary Policy.
    Journal of Monetary Economics, 68, p.19--36.

    Schularick, M., and A. M. Taylor (2012).
    Credit Booms Gone Bust: Monetary Policy, Leverage Cycles, and Financial Crises, 1870-2008.
    American Economic Review, 102(2), p.1029--1061.

    Shiller, R. J., (2016).
    Irrational Exuberance .
    Princeton University Press, Third Edition.

    Sims, C. A., (1992).
    Interpreting the Macroeconomic Time Series Facts: The Effects of Monetary Policy.
    European Economic Review, 36(5), p.975--1000.

    Stock J. H., and M. W. Watson (2018).
    Identification and Estimation of Dynamic Causal Effects in Macroeconomics Using External Instruments.
    Economic Journal, Forthcoming.

    Tavares, T., and R.,Wacziarg (2001).
    How Democracy Affects Growth.
    European Economic Review, 45(8), p.1341--1378.

    Tenreyro, S., and G. Thwaites (2016).
    Pushing on a String: US Monetary Policy is Less Powerful in Recessions.
    American Economic Journal: Macroeconomics, 8(4). p.43--74.

    Teulings, C., and N. Zubanov (2014).
    Is Economic Recovery a Myth? Robust Estimation of Impulse Responses.
    Journal of Applied Econometrics, 29(3), p.497--514.

    Vavra, J., (2014).
    Inflation Dynamics and Time-varying Volatility: New Evidence and an SS interpretation.
    Quarterly Journal of Economics, 129(1), p.215--258.

    Weise, C. L., (1999).
    The Asymmetric Effects of Monetary Policy: A Nonlinear Vector Autoregression Approach.
    Journal of Money, Credit and Banking, 31(1), p.85--108.

    White, H., T. H. Kimb, and S. Manganelli (2015).
    VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles.
    Journal of Econometrics, 187, p.169--188.

    Zdzienicka, A., S. Chen, F. D. Kalan, S. Laseen, and K. Svirydzenka (2015).
    Effects of Monetary and Macroprudential Policies on Financial Conditions: Evidence from the United States.
    IMF Working Paper, WP/15/288.
    Description: 博士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100258502
    Data Type: thesis
    DOI: 10.6814/NCCU202000132
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File SizeFormat
    850201.pdf6917KbAdobe PDF0View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback