English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92429/122733 (75%)
Visitors : 26308220      Online Users : 578
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 會議論文 >  Item 140.119/129022
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/129022

    Title: Enhancing object detection in the dark using U-Net based restoration module
    Authors: 彭彥璁
    Peng, Yan-Tsung
    Huang, Y.-T.*
    Peng, Y.-T.
    Liao, W.-H.
    Contributors: 資科系
    Date: 2019-09
    Issue Date: 2020-03-02 15:23:15 (UTC+8)
    Abstract: In recent years, we have witnessed the widespread application of deep-learning techniques to various surveillance tasks, including human tracking and counting, abnormal behavior detection, and video segmentation. In most cases, the input images/videos are assumed to possess adequate visual quality to guarantee satisfactory performance. However, accuracy may be adversely affected when the input data are degraded by factors such as excessive noise or poor lighting conditions. In the paper, we develop a deep neural network based on the U-Net architecture that acts as a pre-processing module to restore images/videos with nonuniform light sources to ensure the accuracy of the subsequent object detection process. Experimental results on the VisDrone20 19 dataset [1] demonstrate the effectiveness of the proposed method, achieving a remarkable 5% increase in average recall. We expect the framework to be universally applicable to situations that call for the enhancement of raw input data.
    Relation: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, University of Taipei
    Data Type: conference
    DOI 連結: https://doi.org/10.1109/AVSS.2019.8909820
    DOI: 10.1109/AVSS.2019.8909820
    Appears in Collections:[資訊科學系] 會議論文

    Files in This Item:

    File Description SizeFormat
    2.pdf382KbAdobe PDF30View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback