政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/129331
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 109951/140892 (78%)
造访人次 : 46199876      在线人数 : 695
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/129331


    题名: Reduction of lipid contamination in magnetic resonance spectroscopy imaging using signal space projection
    作者: 蔡尚岳
    Tsai, Shang-Yueh
    Lin, Yi-Ru
    Lin, Hsin-Yu
    Lin, Fa-Hsuan
    贡献者: 應物所
    关键词: lipid suppression;MR spectroscopic imaging;out volume saturation;Signal space projection
    日期: 2019-03
    上传时间: 2020-04-20 16:04:18 (UTC+8)
    摘要: Purpose: Lipid contamination can complicate the metabolite quantification in MR spectroscopic imaging (MRSI). In addition to various experimental methods demonstrated to be feasible for lipid suppression, the postprocessing method is beneficial in the flexibility of applications. In this study, the signal space projection (SSP) algorithm is proposed to suppress the lipid signal in the MRSI. Methods: The performance of lipid suppression using SSP and SSP combined with the Papoulis‐Gerchberg (PG) algorithm (PG+SSP) is examined in 2D MRSI data and the results were compared with outer volume saturation (OVS) methods. Up to 10 lipid spatial components were extracted by SSP from lipid signals in the range of 0.8~1.5 ppm. Results: Our results show that most lipid signals were found in the first 4 to 5 components and that lipid signals on the spectra can be suppressed using 4 to 5 components. Metabolites concentrations were quantified using LCModel. Two regions of interest (ROIs) were manually selected on the peripheral and inner brain regions. The quantification of metabolites in terms of fitting reliability (CRLB) and spatial variations within ROIs (SpaVar) is improved using SSP. When 5 to 6 components were used in SSP and PG+SSP, the metabolite concentrations and the associated SpaVar and CRLB are at the same level as those from the OVS. Conclusion: We have demonstrated that the SSP method can be used to suppress the lipid signals of MRSI and SSP with 5 to 6 components is suggested to have a similar suppression performance as the OVS method.
    關聯: Magnetic Resonance in Medicine, Vol.81, No.3, pp.1486–1498
    数据类型: article
    显示于类别:[應用物理研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    89.pdf2040KbAdobe PDF2295检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈